Answer:
98.13m
Explanation:
Complete question
Daniel is 50.0 meters away from a building. Tip of the building makes an angle of 63.0° with the horizontal. What is the height of the building
CHECK THE ATTACHMENT
From the figure, using trigonometry
Tan(θ ) = opposite/adjacent
Where Angle (θ )= 63°
Opposite= X = height of the building
Adjacent= 50 m
Then substitute the values we have
Tan(63)= X/50
1.9626= X/50
X= 1.9626 × 50
X= 98.13m
Hence, the height of the building is 98.13m
Answer:
Fluorine is the most reactive element
Answer:
a) Explanation below. b) Explanation below
Explanation:
Torque is defined as the product of a force by a radius, while momentum is defined as the product of force by a distance. Mathematically we would have
T = F * r
M = F * d
where:
T = torque = [N*m]
M = moment = [N*m]
F = force =[N]
d = distance [m]
r = radius [m]
Although they have the same units, the difference between them is the application. For the case of torque this is always applied in parts that are in rotation, such as the shafts of cars, the shafts of pumps, torque in gears and etc. While the moment can be applied to a body without the need for it to rotate.
A couple, is as its name suggests a couple of forces of equal magnitude but opposite sense and do not share a line of action. A body under the action of a couple of forces tends to rotate the body without moving it from one point to another.
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ
Answer:
, 
Explanation:
The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

where
k is the Coulomb constant
e is the magnitude of the charge of the electron
e is the magnitude of the charge of the proton in the nucleus
r is the distance between the electron and the nucleus
v is the speed of the electron
is the mass of the electron
Solving for v, we find

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

while the electron mass is

and the charge is

Substituting into the formula, we find
