An ideal gas is defined as one in which all collisions between atoms or molecules are perfectly eleastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but which otherwise do not interact with each other.
Happy to help
Answer: 
Explanation:
Given : Sample size : n= 30 , it means it is a large sample (n≥ 30), so we use z-test .
Significance level : 
Critical value: 
Sample mean : 
Standard deviation : 
The formula to find the confidence interval is given by :-

i.e. 
i.e. 

Hence, the 95% confidence interval for the mean mpg in the entire population of that car model = 
Answer: 69.72 kg of cryolite will be produced.
Explanation:
The balanced chemical equation is:

To calculate the moles, we use the equation:

moles of
= 
moles of
= 
moles of
= 
As 1 mole of
reacts with 6 moles of 
166 moles of
reacts with =
moles of 
As 1 mole of
reacts with 12 moles of 
166 moles of
reacts with =
moles of 
Thus
is the limiting reagent.
As 1 mole of
produces = 2 moles of cryolite
166 moles of
reacts with =
moles of cryolite
Mass of cryolite
= 
Thus 69.72 kg of cryolite will be produced.
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
STRUCTURE OF BROMOUS ACID: H–O–Br=O
<span>In this structure, all the elements have a formal charge of
zero. The formal charge of each element is calculated below: </span><span>
H: 1 – 1/2(2) – 0 = 0
O: 6 – 1/2(4) – 4 = 0
Br: 7 – 1/2(6) – 4 = 0
<span>O: 6 – 1/2(4) – 4 = 0</span></span>