Answer:
2) 0.4 mol
Explanation:
Step 1: Given data
- Volume of the solution (V): 500 mL
- Molar concentration of the solution (M): 0.8 M = 0.8 mol/L
Step 2: Convert "V" to L
We will use the conversion factor 1 L = 1000 mL.
500 mL × 1 L/1000 mL = 0.500 L
Step 3: Calculate the moles of KBr (solute)
The molarity is the quotient between the moles of solute (n) and the liters of solution.
M = n/V
n = M × V
n = 0.8 mol/L × 0.500 L = 0.4 mol
Answer:
Wavelength = 0.06024 m
Explanation:
Equation of energy of wavelength from Einstein's relativity equation is;
E = hc/λ
Where;
h is Planck's constant = 6.626 × 10⁻³⁴ J. s
c is speed of light = 3 × 10⁸
We are given E = 3.3 × 10^(-24) J
Making wavelength λ the subject, we have;
λ = hc/E
Thus;
(6.626 × 10⁻³⁴ × 3 × 10⁸)/(3.3 × 10^(-24)) = 6.024 × 10^(-2) = 0.06024 m
Wavelength = 0.06024 m
Answer:
2Al2O3 (l) ---> 4Al (l) + 3O2 (g)
Explanation:
The reaction is the electrolysis of aluminium oxide. It decomposes aluminium oxide (Al2O3) into aluminium metal (Al) and Oxygen (O2). In this process, aluminium oxide is molten (liquid state) so that ions can move to complete the electricity circuit.
Al2O3 (l) ---> Al (l) + O2 (g)
Balance the equation:
2Al2O3 (l) ---> 4Al (l) + 3O2 (g)
Boiling point is the temperature at which vapour pressure equals atmospheric pressure.
As, we move at higher altitudes, atmospheric pressure decreases. Hence, temperature to reach the boiling point will decrease.
Further, boiling point is higher for longer chain compounds. Hence,<span> octane (C8H18) and octanol (C8H17OH) will have higher boiling point as compared to hexane (C6H14). Further, intermolecular forces of interaction are more stronger in octanol, due to presence of OH group, as compared to octane.
Hence, boiling points will be in following order:
Octanol > Octane > Hexane
Thus, hexane will boil first, followed by octane and lastly octanol.</span>