Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
Answer:
The final velocity of the cart is
Explanation:
From the question we are told that
The mass of the girl is 
The mass of the cart is 
The speed of the cart and kid(girl) is 
The final velocity of the girl is 
Let assume that velocity eastward is positive and velocity westward is negative (Note that if we assume vise versa it wouldn't affect the answer )
The total momentum of the system before she steps off the back of the cart
is mathematically evaluated as

substituting values


The total momentum after she steps off the back of the cart is mathematically evaluated as

Where
is the final velocity of the cart
substituting values


Now according to the law of conservation of momentum

So

=> 
Since the value is positive it implies that the cart moved eastward
Answer:
18,850 Hz
Explanation:
We need to figure out the wavelength of the sound wave.
Thus,
Wavelength = 1000 * Lowest Amplitude Wave
Wavelength = 1000 * 2.0 * 10^(-5)
Wavelength = 0.02
Or,

Now, we need the frequency of this wave. It goes by the formula:

Where
f is the frequency in Hz
v is the speed of sound in air (to be 377 m/s)
is the wavelength (we found to be 0.02)
Substituting, we find the frequency:

The wave has frequency of 18,850 Hz