Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
Answer:
14.93 g
Explanation:
First we <u>convert 1.2 x 10²³ atoms of arsenic (As) into moles</u>, using <em>Avogadro's number</em>:
- 1.2 x 10²³ atoms ÷ 6.023x10²³ atoms/mol = 0.199 mol As
Then we can<u> calculate the mass of 0.199 moles of arsenic</u>, using its<em> molar mass</em>:
- 0.199 mol * 74.92 g/mol = 14.93 g
Thus, 1.2x10²³ atoms of arsenic weigh 14.93 grams.
Answer:
467
Explanation:
ncl2 = 454.4x1/(71.0 g/mol) = 6.40 mols cl2
6.40 mols cl2 x 2molsHCL/1moleCL2 x 36.5g/1moleHCL = <u>467 g HCL</u>
Answer:
Large temperature and air pressure decrease.
Temperature and air pressure increase.
Explanation:
Answer:
Mass of solution=100g
mass of salt=20g
so; mass of solute=80g
percentage composition =(mass of salt/total
mass) ×100
= \frac{20}{100} \times 100 \\ = 20\%
glad to help you
hope it helps