Answer:11.1
Explanation:
Three significant figures
Answer:
See below
Explanation:
Normal force = m g cos 53 = 8 kg * 9.8 m/s^2 * cos 53 = 47.1823 N
no work is done by this force
Force friction = coeff friction * force normal = .4 * 47.1823 = 7.55 N
work of friction = 7.55 * 2 m = 15.1 j
Force Downplane = mg sin 53 = 62.61 N
work = 62.61 * 2 = 125.22 j
Net Force downplane = force downplane - force friction = 55.06 N
net Work = force * distance = 55.06 N * 2 M = 110.12 j
Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F =
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A = = 1/8
F_A = 8 F_B
Answer:
Explanation:
Wave 1,
Wave 2,
Wave 3,
Wave 4,
The general equation of travelling wave is given by :
The value of will remain the same if we take phase difference into account.
For first wave,
For second wave,
For the third wave,
For the fourth wave,
It is clear from above calculations that waves 1 and 3 have same time period. Also, wave 2 and 4 have same time period. Hence, this is the required solution.
Explanation:
The uneven heating causes temperature differences, which in turn cause air currents (wind) to develop, which then move heat from where there is more heat (higher temperatures) to where there is less heat (lower temperatures). The atmosphere thus becomes a giant "heat engine", continuously driven by the sun.
Wind is the result of pressure changes in the atmosphere due to temperature.