Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
The grams of the sugar in 125 g of the drink is calculated as below
%M/m) = mass of the solute (sugar)/ mass of the solvent(drink) x100
let the mass of the solute(sugar) be represented by y
convert % into fraction by dividing by 100 = 10.5/100
10.5/100 = y/125
by cross multiplication
100y =1312.5
divide both side by 100
y=13.125 grams
Answer:
Living organisms need water to survive. Many scientists even believe that if any extra-terrestrial exists, water must be present in their environments. All oxygen-dependent organisms need water to aid in the respiration process. Some organisms, such as fish, can only breathe in water. Other organisms require water to break down food molecules or generate energy during the respiration process. Water also helps many organisms regulate metabolism and dissolves compounds going into or out of the body.
Explanation:
If the heating is done on one small area on the top, there will be convection. If the heating is restricted to a small fraction of the heating area, then within that area the heating will go deeper than anywhere else on the surface. Then unheated area will have a shallower region of high temperature. Then some convection will occur in the deeper layers, causing some motion on top.
This happens quite a bit during welding. Convection is very significant in welding, even when the heating is from the top.
I googled it and all it came up for is the Wikipedia for high school musical.
but yeah my personal answer would be: chemistry <span />