Explanation:
First, we will calculate fuel consumption is as follows.

= 4526 g/s
Now, we will calculate the power as follows.
Power = Fuel consumption rate × -enthalpy of combustion
= 
=
kW
Thus, we can conclude that maximum power (in units of kilowatts) that can be produced by this spacecraft is
kW.
Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.
Answer:
6
Explanation
every p sublevel holds up to 6 electrons
so the 4p sublevel must hold up to 6 electonsr
Answer:

Explanation:
Hello!
In this case, since we are considering an gas, which can be considered as idea, we can write the ideal gas equation in order to write it in terms of density rather than moles and volume:

Whereas MM is the molar mass of the gas. Now, since we can identify the initial and final states, we can cancel out R and MM since they remain the same:

It means we can compute the final density as shown below:

Now, we plug in to obtain:

Regards!
The answer to the question is "B. Roman Numerals"