Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Answer:
The energy that the truck lose to air resistance per hour is 87.47MJ
Explanation:
To solve this exercise it is necessary to compile the concepts of kinetic energy because of the drag force given in aerodynamic bodies. According to the theory we know that the drag force is defined by

Our values are:




Replacing,


We need calculate now the energy lost through a time T, then,

But we know that d is equal to

Where
v is the velocity and t the time. However the time is given in seconds but for this problem we need the time in hours, so,

(per hour)
Therefore the energy that the truck lose to air resistance per hour is 87.47MJ
An object need to move in a straight line in the same direction in equal intervals of time in order for total distance traveled and displacement to be equal.
Answer:
120 kg m/s
Explanation:
The magnitude of the momentum of an object is given by

where
m is the mass of the object
v is its speed
For the block in this problem,
m = 10.0 kg (mass of the block)
v = 12.0 m/s (speed of the block)
Therefore the magnitude of the block's momentum is
