Answer: Mass is the correct answer. Explanation: As mass is defined as the amount of matter contained in the substances or an object.
Answer:
True
Explanation:
Velocity is a vector quantity, which means that it carries both magnitude and direction. Hence when direction of a particle changes, although magnitude (speed) may remain same, it's velocity changes due to direction change. For ex. A particle is m... A particle is moving along x axis with speed 1m/s, it's velocity will be represented as 1i (i represents unit vector along x)
But if it now starts moving along y axis, it's velocity is 1j (j represents unit vector along y axis). Hence velocity changes with direction.
brainllest pls .
Answer:
Volt
Explanation:
Voltage is what makes electric charges move. ... Voltage is also called, in certain circumstances, electromotive force (EMF). Voltage is an electrical potential difference, the difference in electric potential between two places. The unit for electrical potential difference, or voltage, is the volt.
The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces in the conductor a current of one ampere, the conductor not being the seat of any electromotive force.
The coulomb (symbolized C) is the standard unit of electric charge in the International System of Units (SI). ... In terms of SI base units, the coulomb is the equivalent of one ampere-second. Conversely, an electric current of A represents 1 C of unit electric charge carriers flowing past a specific point in 1 s.
An ampere is a unit of measure of the rate of electron flow or current in an electrical conductor. One ampere of current represents one coulomb of electrical charge (6.24 x 1018 charge carriers) moving past a specific point in one second.
<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>