The number of atoms in a molecule can be calculated by adding all of the number of elements from the chemical formula. For chlorophyll, the chemical formula would be <span>C55H72MgN4O5 adding all the elements we have 137 atoms. Hope this answers the question.</span>
Answer: Option (B) is the correct answer.
Explanation:
When a fatty acid contains high number of double bonds then its unsaturation will also be high and hence, it will consume greater number of equivalents of hydrogen.
In corn oil, there are no unsaturated sites are present.
In olive oil, there is one unsaturated site with majority of oleic acid. In olive oil, there are more than 70% of total unsaturated oils.
In lard oil, there are around 60% of unsaturated oils.
In herring oil, there are highest number of saturated fatty acids and lowest polyunsaturated acids.
Thus, we can conclude that out of the given options, olive oils would consume the greatest number of equivalents of hydrogen when subject to catalytic hydrogenation.
The average atomic mass of Sn is 118.71 g/mol
the percentage of heaviest Sn is 5.80%
the given mass of Sn is 82g
The total moles of Sn will be = mass / atomic mass = 82/118.71=0.691
Total atoms of Sn in 82g = 
the percentage of heaviest Sn is 5.80%
So the total atoms of
= 5.80% X 
Total atoms of
=
atoms
the mass of
will be = 
Answer:
2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.
Explanation:
- For balancing a chemical equation, we should apply the law of conversation of mass. It states that the no. of atoms in the reactants side is equal to that of the products side.
So, the balanced equation:
<em>2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.</em>
It is clear that 2.0 moles of C₃H₇BO₃ is completely burned in 8 m oles of oxygen and produce 6 moles of CO₂, 7 moles of H₂O and 1 mole of B₂O₃.
The powder sugar because has more contact area