1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
2 years ago
12

A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger pulley with an angular velocity

ratio of 0.5. The center-to-center distance is 9 ft. The angular speed of the small pulley is 1750 rev/min as it delivers 2 hp. The service is such that a service factor Ks of 1.25 is appropriate. (a) Find Fc, Fi, (F1)a, and F2, assuming operation at the maximum tension limit. (b) Find Ha, nfs, and belt length.
Physics
1 answer:
Likurg_2 [28]2 years ago
7 0

Answer:

a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2  = 239.6 N,

b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm

Explanation:

Given that:

γ= 9.5 kN/m³ = 9500N/m3

b = 6 inches = 0.1524 m

t = 0.0013 mm

d = 2 inches  = 0.0508 m

n = 1750 rpm

H_{nom}=2hp=1491.4W

L = 9 ft = 2.7432 m

Ks = 1.25

g = 9.81 m/s²

a)

w=\gamma b t = 9500* 0.1524*0.0013=1.88N/m

V=\frac{\pi d n}{60} =\pi *0.0508*1750/60=4.65 m/s

F_c=\frac{wV^2}{g}=1.88*4.65^2/9.81=4.15N

(F_1)_a=bF_aC_pC_v=0.1524*6000*0.7*1=640N

T=\frac{H_{nom}n_dK_s}{2\pi n}= \frac{1491*1.25*1}{2*\pi*1750/60}=10.17Nm

F_2=(F_1)_a-\frac{2T}{D}= 640-\frac{2*10.17}{0.0508} =239.6N

F_i=\frac{(F_1)_a+F_2}{2} -F_c=435.65N

b)

H_a=1491*1.25=1863.75W

n_f_s=\frac{H_a}{H_{nom}K_S }=1

dip = \frac{L^2w}{8F_i} =\frac{2.7432*1.88}{435.65}=11.8mm

You might be interested in
Two students are standing on a fire escape, one twice as high as the other. Simultaneously, each drops a ball.
almond37 [142]
The second ball should strike at double the original t value
4 0
3 years ago
What makes these image a represent of what research <br>​
ycow [4]
The economic down fall
3 0
3 years ago
A speed boat increases its speed uniformly from vi = 20.0 m/s to vf = 30.0 m/s in a distance of 2.00 x 10^2m. (a) Draw a coordin
pychu [463]

a) See graph in attachment

b) The suvat equation to use is v_f^2 - v_i^2 = 2as

c) The acceleration is a=\frac{v_f^2-v_i^2}{2s}

d) The acceleration is 1.25 m/s^2

e) The time needed is 8 s

Explanation:

a)

For this part, find in attachment the diagram representing this situation.

Since we are not given any particular direction for the motion, we choose the x-direction as the direction of motion of the boat.

Then we have the following:

- The initial position of the boat is x_i = 0, the origin

- The  final position of the boat is x_f = 200 m

- The initial velocity of the boat is v_i = 20.0 m/s

- The final velocity of the boat is v_f = 30.0 m/s

Note that the arrow representing the final velocity is longer than that of the initial velocity, since the final velocity is larger.

b)

The motion of the speed boat is a uniformly accelerated motion (motion at constant acceleration), therefore we can use one of the suvat equations. In this particular problem, we know the following quantities:

v_i = 20.0 m/s, the initial velocity

v_f = 30.0 m/s, the final velocity

s = x_f - x_i = 200 m, the  displacement of the boat

Therefore, the equation that best can be use to find the acceleration is

v_f^2 - v_i^2 = 2as

where

a is the acceleration

c)

Now we have to solve the equation

v_f^2 - v_i^2 = 2as

In order to find the acceleration.

This can be done by dividing both terms by 2s: this way, we find

\frac{v_f^2-v_i^2}{2s}=\frac{2as}{2s}

And so the acceleration is

a=\frac{v_f^2-v_i^2}{2s}

d)

Now we can use the equation found in part c) in order to find the acceleration.

We have the following data:

v_i = 20.0 m/s, the initial velocity

v_f = 30.0 m/s, the final velocity

s = x_f - x_i = 200 m, the  displacement of the boat

And substituting into the equation,

a=\frac{30^2-20^2}{2(200)}=1.25 m/s^2

e)

In order to find the time it takes the boat to travel the given distance, we can use the following suvat equation:

v_f = v_i + at

where:

v_i is the initial velocity

v_f is the final velocity

a is the acceleration

t is the time

Here we have:

v_i = 20.0 m/s

v_f = 30.0 m/s

a=1.25 m/s^2

Solving for t, we find:

t=\frac{v_f-v_i}{a}=\frac{30-20}{1.25}=8 s

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
two forces whose magnitude are in ratio of 3:5 gives a resultant of 35N.if the angle of inclination is 60degree.calculate the ma
nadya68 [22]

Answer:

the magnitude of first force = 3 × 5= 15 N

ANd, the magnitude of second force = 5 × 5 = 25 N

Explanation:

The computation of the magnitude of the each force is shown below:

Provided that

Ratio of forces = 3: 5

Let us assume the common factor is x

Now

first force =  3x

And, the second force = 5x

Resultant force = 35 N

The Angle between the forces = 60 degrees  

Based on the above information

Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos\theta

35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]

 35 =√ 9x² + 25x² + 15x²    (cos 60° = 0.5)

35 = √49 x²

 x = 5

So, the magnitude of first force = 3 × 5= 15 N

ANd, the magnitude of second force = 5 × 5 = 25 N

7 0
3 years ago
If earth's mass were half its actual value but its radius stayed the same, the escape velocity of earth would be:________
siniylev [52]

If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be V_e = \sqrt{\dfrac{GM}{r}}.

<h3>What is an escape velocity?</h3>

The ratio of the object's travel distance over a specific period of time is known as its velocity. As a vector quantity, the velocity requires both the magnitude and the direction. the slowest possible speed at which a body can break out of the gravitational pull of a certain planet or another object.

The formula to calculate the escape velocity of earth is given below:-

V_e=\sqrt{\dfrac{2GM}{r}}

Given that earth's mass was half its actual value but its radius stayed the same. The escape velocity will be calculated as below:-

V_e=\sqrt{\dfrac{2GM}{r\times 2}}

V_e = \sqrt{\dfrac{GM}{r}}.

Therefore, If the earth's mass were half its actual value but its radius stayed the same, the escape velocity of the earth would be V_e = \sqrt{\dfrac{GM}{r}}.

To know more about escape velocity follow

brainly.com/question/14042253

#SPJ4

8 0
1 year ago
Other questions:
  • many musical instruments use "boxes" as a part of an instrument. Some examples are acoustic guitars and pianos. From your experi
    11·1 answer
  • What questions should be considered when evaluating the reliability of a website?
    5·2 answers
  • What do we call the distance labeled from A to B and what could we do to the note played on an instrument to change that distanc
    14·2 answers
  • X-ray photons of wavelength 0.02480 nm are incident on a target and the Compton scattered photons are observed at 90 degrees.
    6·1 answer
  • Which of these is an example of a chemical change?
    8·2 answers
  • A nuclear power plant operates at 79 percent of its maximum theoretical (Carnot) efficiency between temperatures of 700° and 330
    8·1 answer
  • A 7780 ‑kg car is travelling at 30.7 m/s when the driver decides to exit the freeway by going up a ramp. After coasting 404 m al
    8·1 answer
  • Nathan is standing 2 feet away from a plane mirror. Hiva is standing 5 feet further than
    5·1 answer
  • a ball dropped from rest falls freely intil it hits the ground with the speed of 20 m/s . the tine furing which the ball is in f
    7·1 answer
  • A hooligan throws a stone vertically down with an initial speed of 17 m/s from the roof of a building 51 metres above the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!