Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.
Answer:
Increases
Explanation:
Since power P=IV
Then it means when current increases, the power increases hence brightness increases. I represent current, P is power and v is voltage.
Current of capacitor when in series connection is given by

where I is current across capacitor, f is frequency, C is capacitance and v is voltage across capacitance. From this second formula, it is evident that an increase in capacitance increases the current across the capacitor. Therefore, if current increases, power also increases leading to an increase in brightness
Answer:
Fall at equal acceleration with similar displacements.
Explanation:
-
Objects under free fall with no air resistance, are falling under the sole influence of gravity. So, under that conditions, objects with different masses will fall with the same rate of acceleration
Answer:
The answer is in the attachment
Explanation:
<em>!</em><em>!</em><em>PLEASE</em><em> </em><em>PLEASE</em><em> </em><em>PLEASE</em><em> </em><em>PLEASE</em><em> </em><em>PLEASE</em><em> </em><em>MARK</em><em> </em><em>ME</em><em> </em><em>THE</em><em> </em><em>BRAINLIEST</em><em>!</em><em>!</em>
<span>The diver is heading downwards at 12 m/s
Ignoring air resistance, the formula for the distance under constant acceleration is
d = VT - 0.5AT^2
where
V = initial velocity
T = time
A = acceleration (9.8 m/s^2 on Earth)
In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m)
So let's substitute the known values and solve for T
d = VT - 0.5AT^2
-7 = 2.5T - 0.5*9.8T^2
-7 = 2.5T - 4.9T^2
0 = 2.5T - 4.9T^2 + 7
We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164.
Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So
V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s
V = 2.5 m/s - 14.47706141 m/s
V = -11.97706141 m/s
So the diver is going down at a velocity of 11.98 m/s
Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point.
V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s)
V = 2.5 m/s - (-9.477061409 m/s)
V = 2.5 m/s + 9.477061409 m/s
V = 11.97706141 m/s
And you get the exact same velocity, except it's the opposite sign.
In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>