Answer:
(a) W = 1329.5 J = 1.33 KJ
(b) ΔU = 24.27 KJ
Explanation:
(a)
Work done by the gas can be found by the following formula:
where,
W = Work = ?
P = constant pressure = (0.991 atm)() = 100413 Pa
ΔV = Change in Volume = 18.7 L - 5.46 L = (13.24 L)() = 0.01324 m³
Therefore,
W = (100413 Pa)(0.01324 m³)
<u>W = 1329.5 J = 1.33 KJ</u>
<u></u>
(b)
Using the first law of thermodynamics:
ΔU = ΔQ - W (negative W for the work done by the system)
where,
ΔU = change in internal energy of the gas = ?
ΔQ = heat added to the system = 25.6 KJ
Therefore,
ΔU = 25.6 KJ - 1.33 KJ
<u>ΔU = 24.27 KJ</u>
Answer:
The horizontal distance traveled by the projectile is 15.23 m.
Explanation:
Given;
angle of projection, θ = 25⁰
initial velocity of the projectile, u = 15 m/s
time of flight, t = 1.12 s
The the travelling path of the object is calculated as the range of the projectile
Therefore, the horizontal distance traveled by the projectile is 15.23 m.
An isotope is one of the forms of an element that has the same number of protons, but a different number of neutrons.
Answer:
F = 1.099N
Explanation:
See the attachment below.
Answer:
True
Explanation:
Momentum of an object can be defined as the product of its mass and velocity at which it is travelling. With that in mind, momentum = 3*100=300(kg⋅m/s).
One thing to note is the units mentioned. The SI unit of momentum is kg * m/s as it is the product of mass(kilograms) and velocity(meter per second) and not Newton.