Answer:
Answer for A
Explanation:
F1=GmM/r1^2
If r2 becomes r2=5r
F2=GmM/(25r^2)
Multiply with 25 gives to maintain the same force
I.e.,25F2=F1
F2=G(25m)M/25r^2=F1
By the factor 25 would change to increase to same.
Answer:
8 V
Explanation:
There is no resistance between the left legs of voltmeters 2 and 3 and there is no resistance between the right legs of voltmeters 2 and 3. They are measuring the same voltage.
The statement “Impulse is a vector quantity” is true about Impulse.
Answer: Option B
<u>Explanation:
</u>
The object’s action by applied force in a particular time interval, there happens changing in momentum called impulse. It is denoted by a symbol ‘J’ or ‘imp’ and expressed in a unit ‘Ns’. As impulse depends on the acted force, when a collision arises from front, behind or side, the force’s direction would be differed.

So, from this option A is false as impulse is not a force but changing momentum. The unit is not Newton, it is Newton second (Ns). The force direction differs (impulse direction) for each cases of collision, so option D also false. Hence, option B seems to be correct. Vector quantity deals with both direction and magnitude and important in motion study.
The change in the Gibb's free energy per mole (G) is 1.96 J.
The given parameters:
- Density of the ice, ρ = 917 kg/m³
- Initial pressure, P₁ = 1.0 bar
- Final pressure, P₂ = 2.0 bar
- Temperature, T = - 10 C
- Mass of water = 18 g
The change in the Gibb's free energy per mole (G) is calculated as follows;

where;
V is the volume of the ice

Change in pressure;

The change in the Gibb's free energy per mole (G);

Thus, the change in the Gibb's free energy per mole (G) is 1.96 J.
Learn more about Gibb's free energy here: brainly.com/question/10012881