Answer: T is greater
Explanation:
Since the elevator is moving against gravity more work will be done on the rope
T= m(g+a)
<h2>Acceleration due to gravity in moon is 1.5 m/s²</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Here the ball travels 3 m less distance in fifth second compared to third second.
That is
s₃ = s₅ + 3
Now we have
Distance traveled in third second, s₃ = u x 3 - 0.5 x g x 3² - u x 2 - 0.5 x g x 2²
s₃ = u - 2.5 g
Also
Distance traveled in fifth second, s₅ = u x 5 - 0.5 x g x 5² - u x 4 - 0.5 x g x 4²
s₅ = u - 4.5 g
That is
u - 2.5 g = u - 4.5 g + 3
2 g = 3
g = 1.5 m/s²
Acceleration due to gravity in moon = 1.5 m/s²
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
<span>The answer is C. This is called polarization of light by reflection. The sunlight is reflected at a parallel angle from on the surface plane of the water from which it bounces from. The glare is due to this polarization of sun beams at an angle with respect to the viewer. </span>