Answer: The energy of the 4-s subshell is lower than the energy of 3-d subshell.
Explanation:
During the filling of electrons in subshells, the lower energy levels are filled before the higher energy levels. Also known as Aufbau principle.
Energy of the sublevel = (n + l)
where : n = Principal quantum number
l = Azimuthal quantum number(s=0,p=1,d=2,f=3)
Energy of 4-s subshell= (4+0) = 4
Energy of 3-d subshell=(3+2) = 5
Energy of 4-s subshell is lower than the energy of 3-d subshell, that is why 4s orbital is filled before the 3-d subshell.
The daughter isotope : Radon-222 (Rn-222).
<h3>Further explanation</h3>
Given
Radium (Ra-226) undergoes an alpha decay
Required
The daughter nuclide
Solution
Radioactivity is the process of unstable isotopes to stable isotopes by decay, by emitting certain particles,
- alpha α particles ₂He⁴
- beta β ₋₁e⁰ particles
- gamma particles ₀γ⁰
- positron particles ₁e⁰
- neutron ₀n¹
The decay reaction uses the principle: the sum of the atomic number and mass number before and after decay are the same
Radium (Ra-226) : ₈₈²²⁶Ra
Alpha particles : ₂⁴He
So Radon-226 emits alpha α particles ₂He⁴ , so the atomic number decreases by 2, mass number decreases by 4
The reaction :
₈₈²²⁶Ra ⇒ ₂⁴He + ₈₆²²²Rn
Answer:
-179.06 kJ
Explanation:
Let's consider the following balanced reaction.
HCl(g) + NaOH(s) ⟶ NaCl(s) + H₂O(l)
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
ΔH°r = 1 mol × ΔH°f(NaCl(s)) + 1 mol × ΔH°f(H₂O(l)) - 1 mol × ΔH°f(HCl(g)) - 1 mol × ΔH°f(NaOH(s))
ΔH°r = 1 mol × (-411.15 kJ/mol) + 1 mol × (-285.83 kJ/mol) - 1 mol × (-92.31 kJ/mol) - 1 mol × (-425.61 kJ/mol)
ΔH°r = -179.06 kJ
Gravity depends on distance and the moon is closer to earth
Plants require pH to thrive which in turn gives us food.