Answer:

Explanation:
Given:
mass of first particle, 
mass of second particle, 
mass of third particle, 
coordinate position of first particle in meters, 
coordinate position of second particle in meters, 
coordinate position of third particle in meters, 
<u>Now, gravitational force on particle 3 due to particle 1:</u>



towards positive Y axis.
<u>gravitational force on particle 3 due to particle 2:</u>



towards positive X axis.
<u>Now the net force</u>



<em>For angle in counterclockwise direction from the +x-axis</em>

The heat Q transferred to cause a temperature change depends on the magnitude of the temperature change, the mass of the system, and the substance and phase involved.
Explanation:
https://courses.lumenlearning.com/physics/chapter/14-2-temperature-change-and-heat-capacity/
Answer:
v = 6t² + t + 2, s = 2t³ + ½ t² + 2t
59 m/s, 64.5 m
Explanation:
a = 12t + 1
v = ∫ a dt
v = 6t² + t + C
At t = 0, v = 2.
2 = 6(0)² + (0) + C
2 = C
Therefore, v = 6t² + t + 2.
s = ∫ v dt
s = 2t³ + ½ t² + 2t + C
At t = 0, s = 0.
0 = 2(0)³ + ½ (0)² + 2(0) + C
0 = C
Therefore, s = 2t³ + ½ t² + 2t.
At t = 3:
v = 6(3)² + (3) + 2 = 59
s = 2(3)³ + ½ (3)² + 2(3) = 64.5
The voltage<span> difference between the two plates can be expressed in terms of the </span>work<span> done on a positive test charge q when it moves from the positive to the negative plate.</span><span>
E=V/d
where V is the voltage and d is the distance between the plates.
So,
E=6.0V/1mm= 6000 V/m. The electric field between the plates is 6000 V/m.</span>
171.0798 M/S
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Was this helpful