Answer:
a = kL/m
Explanation:
Here we can use Hooke's Law to find out the force applied on the system. Hooke's Law states that when a spring is stretched by some force, the force applied is directly proportional to the displacement of spring. The formula is given as:
F = kL
Now, the Newton's Second Law of motion states that whenever an unbalanced force is applied to a body it produces an acceleration in the body, in its own direction. So, the force is given by the formula:
F = ma
Comparing both the forces, we get:
kL = ma
<u>a = kL/m</u>
Wavelength - the distance from one wave crest or trough to another wave crest or trough. Amplitude - the distance from the median point or "middle" of the wave straight up to a crest (a maximum) or straight down to a trough (or minimum), which is the peak amplitude; or the distance from a trough straight up to a crest, or a crest straight down to a trough, called peak-to-peak amplitude.
Answer:
4th answer
Explanation:
The gradient of a distance-time graph gives the speed.
gradient = distance / time = speed
Here, the gradient is a constant till 30s. So it has travelled at a constant speed. It means it had not accelarated till 30s. and has stopped moving at 30s.
Near the surface of reflection, reflected wave may interfere with incident wave leading to production of constructive and as well as destructive interference. This in turn, can result to resonance as well as enhancement of the sound intensity as the waves of reflection adds to incident wave. Therefore, the girl would higher intensity of reflected waves as compared to incident waves.
Therefore, statement A is correct.