Answer:
V = 20 miles /sec
Explanation:
We have remaining distance = d = 96 miles
Lets call Pascal velocity V in miles per hour
Now if he increases his velocity by 50 % (equivalent to multiply by 1.5 ) he will need a time t₁ to arrive then as V = d/t
1.5* V = d/ t₁ ⇒ 1.5 * V = 96 /t₁
And in the case of reducing his velocity
(V / 4) = d/ (t₁ + 16 ) ⇒ V * (t₁ + 16 ) = 4*d ⇒ V*t₁ + 16*V = 384
So we a 2 equation system with two uknown variables
1.5*V = 96/t₁ (1)
V*t₁ + 16*V = 384 (2)
We solve from equation (1) t₁ = 64/V
And by substitution in equation (2)
V * (64/V) + 16* V = 384
64 + 16 *V = 384 ⇒ 16*V = 320 ⇒ V= 320/16
V = 20 miles /sec
Answer:
Explanation:
Given
Diameter of Pulley=10.4 cm
mass of Pulley(m)=2.3 kg
mass of book
height(h)=1 m
time taken=0.64 s


![a=4.88 m/s^2and [tex]a=\alpha r](https://tex.z-dn.net/?f=a%3D4.88%20m%2Fs%5E2%3C%2Fp%3E%3Cp%3Eand%20%5Btex%5Da%3D%5Calpha%20r)
where
is angular acceleration of pulley


And Tension in Rope


T=8.364 N
and Tension will provide Torque




Thus mass is uniformly distributed or some more towards periphery of Pulley
The figure shown above is series combination as the two resistors (bulb) are there which are then connected to the battery
so i conclude from the above options given the option is B
hope it helps
Displacement is a vector magnitude that depends on the position of the body which is individualistic for the trajectory.
While, Distance is a scalar magnitude that measures over the trajectory.
Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²