The BT chemicals in the polymers of the UV radiation and asbestos
Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
Density is mass divided by volume, you would have to solve for the volume of the ball and rearrange the equation to density divided by volume equals mass