The sun has orbited along time so when they ask theses questions I give you the right answer I think lol
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
Answer:
B
Explanation:
nothing to do with black holes creating star or related
Answer:
Moment of inertia of the system is 289.088 kg.m^2
Explanation:
Given:
Mass of the platform which is a uniform disk = 129 kg
Radius of the disk rotating about vertical axis = 1.61 m
Mass of the person standing on platform = 65.7 kg
Distance from the center of platform = 1.07 m
Mass of the dog on the platform = 27.3 kg
Distance from center of platform = 1.31 m
We have to calculate the moment of inertia.
Formula:
MOI of disk = 
Moment of inertia of the person and the dog will be mr^2.
Where m and r are different for both the bodies.
So,
Moment of inertia
of the system with respect to the axis yy.
⇒ 
⇒ 
⇒ 
⇒
The moment of inertia of the system is 289.088 kg.m^2