The mass of a particle is 2.2x10⁻¹⁵ kg
Consider smoke particles as an ideal gas
The translational RMS speed of the smoke particles is 2.45x10⁻³ m/s.
<em>v= √3kT/m</em>
<em>where k= 1.38x10⁻²³J/K, T is 288K, and m is the mass of the smoke particle</em>
<em>2.45x10⁻³ = √3x1.38x10⁻²³x288/m</em>
<em>m= 2.2x10⁻¹⁵ kg</em>
Therefore, the mass of a particle is 2.2x10⁻¹⁵ kg.
To learn more about the translational root mean square speed of gases, visit brainly.com/question/6853705
#SPJ4
Answer:
The maximum speed is 21.39 m/s.
Explanation:
Given;
radius of the flat curve, r₁ = 150 m
maximum speed,
= 32.5 m/s
The maximum acceleration on the unbanked curve is calculated as;

the radius of the second flat curve, r₂ = 65.0 m
the maximum speed this unbanked curve should be rated is calculated as;

Therefore, the maximum speed is 21.39 m/s.
500N
Explanation:
Given parameters:
Mass of skater = 50kg
Acceleration = 10m/s
Unknown:
Force = ?
Solution;
Force is a push or pull on a body. it is given as the product of mass and acceleration:
Force = mass x acceleration
Input the parameters:
Force = 50 x 10 = 500N
She hits the wall with a force of 500N
Learn more:
Force brainly.com/question/3820012
#learnwithBrainly
I wouldn't be 1000 but I have a feeling your best bet will be B
Mass of Tracey M1 = 32 kg
Mass of Jonas M2 = 45 kg
Initially both were at rest
so V1i = V2i =0
after pushing each other Jonas speed V2f = 0.80 m/s
we need to find out final speed of Tracy
Here we can use momentum conservation as no external force is acting here
M1V1i + M2V2i = M1V1f + M2V2f
32(0) + 45(0) = 32 V1f + 45(0.80)
0 = 32 V1f + 36
-36 = 32 V1f
V1f = - 1.125 m/s
negative sign shows that Tracy will move opposite to the Jonas
so answer in two significant figure would be
V1f = 1.1 m/s