ITS C
This element tends to lose 2 electrons to become a 2+ ion, is the correct statement regarding the element calcium. Calcium has 2 electrons in its outer shell and it is easier to lose them than it is to gain enough to become stable. When stable it has 2 more protons than electrons forming a 2+ ion.
Macromolecule polymers are assembled by the connecting of monomers. An -OH group is detached from one monomer and a hydrogen atom is detached from an additional in a procedure named dehydration synthesis in the monomers bond. For every subunit supplementary to a macromolecule in which one water molecule is detached. Macromolecule polymers are broken down by breaking bonds among subunits. This procedure is named hydrolysis and is the opposite of dehydration. During hydrolysis the hydrogen atom is supplementary to one monomer and a hydroxyl cluster to the other and by breaking the covalent bond in the middle of the monomers.
Answer:
The magnitude of F₁ is 3.7 times of F₂
Explanation:
Given that,
Time = 10 sec
Speed = 3.0 km/h
Speed of second tugboat = 11 km/h
We need to calculate the speed


The force F₁is constant acceleration is also a constant.

We need to calculate the acceleration
Using formula of acceleration



Similarly,

For total force,


The speed of second tugboat is


We need to calculate total acceleration



We need to calculate the acceleration a₂



We need to calculate the factor of F₁ and F₂
Dividing force F₁ by F₂



Hence, The magnitude of F₁ is 3.7 times of F₂
1 hour = 3600 seconds.
Energy dissipated = I²Rt = 8²×20×3600 = 4608000 J
Answer:
power emitted is 1.75 W
Explanation:
given data
length l = 5 cm = 5 ×
m
diameter d = 0.074 cm = 74 ×
m
total filament emissivity = 0.300
temperature = 3068 K
to find out
power emitted
solution
we find first area that is π×d×L
area = π×d×L
area = π×74 ×
×5 ×
area = 1162.3892 ×
m²
so here power emitted is express as
power emitted = E × σ × area × (temperature)^4
put here all value
power emitted = 0.300× 5.67 × 1162.3892 ×
× (3068)^4
power emitted = 1.75 W