Answer:
1.5 km/s²
Explanation:
Given that:
a car starts from rest; it means the initial velocity (u) = 0 km/hr = 0 m/s
after time (t) = 20 seconds
the final velocity = 108 km/hr = 30 m/s
The acceleration (a) of the car can be determined by using the formula:



a = 1.5 km/s²
Answer:
Answer is B.
Because the wavelength of infrared is shorter than microwave radiation
Answer:
All statement are correct.
Explanation:
1. Electric field lines are the same thing as electric field vectors, electric field are mathematically vectors quantity. These vectors point in the direction in which a positive test charge would move.
2. Electric field line drawings allow you to determine the approximate direction of the electric field at a point in space. Yes it is correct tangent drawn at any point on these lines gives the direction of electric filed at that point.
3. The number of electric field lines that start or end at a charged particle is proportional to the magnitude of charge on the particle, is a correct statement.
4.The electric field is strongest where the electric field lines are close together, again a correct statement as relative closeness of field lines indicate a stronger strength of electric field.
Hence we can say that all the statement are correct.
Answer:
12.5 m/s
Explanation:
In a acceleration time graph the area under the curve gives the change in velocity of the object. Here object starts at rest and therefore initial velocity is 0. After 5 seconds acceleration is 5m/s2.
change in velocity=area under the curve
change in velocity= 0.5*acceleration* change in time
v-0=0.5*5*5
v=12.5 m/s
It's velocity when it strikes the ground is. D. 232.9 kg.m/s<span>.
</span>
I hope this helps!!!