1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
2 years ago
12

6. You must turn on your headlights

Physics
1 answer:
Umnica [9.8K]2 years ago
8 0
The most logical answer would be C :)
You might be interested in
A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move t
Veronika [31]

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×10^{24} be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×10^{-11} N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=\sqrt{\frac{Gmm}{R+h} }         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = h_{i} = 98 km = 98000 m

∴Initial Energy (E_{i})  = \frac{1}{2}mv^{2} + \frac{-GMm}{(R+h_{i} )}

Substituting v=\sqrt{\frac{GMm}{R+h_{i} } } in the above equation and simplifying we get,

E_{i} = \frac{-GMm}{2(R+h_{i}) }

Similarly for final condition,

h=h_{f} = 198km = 198000 m

∴Final Energy(E_{f}) = \frac{-GMm}{2(R+h_{f}) }

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = E_{f} - E_{i}

        = \frac{GMm}{2}(\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} })

Substituting ,

M = 6 × 10^{24} kg

m = 1036 kg

G = 6.67 × 10^{-11}

R = 6400000 m

h_{i} = 98000 m

h_{f} = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = \frac{1}{2}m[v_{f} ^{2} - v_{i} ^{2}]

                                                          = \frac{GMm}{2}[\frac{1} {R+h_{f} } - \frac{1} {R+h_{i} }]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} }]

                                                             = 2ΔE

                                                             = 968.907 MJ

3 0
3 years ago
if the efficiency of an electric furnace is 96%, then 96% of the input energy is transformed into thermal energy. what is the ot
Nonamiya [84]
It is wasted, most likely as light, in this case, or it is lost during the transport of electricity.
5 0
3 years ago
A nonconducting spherical shell, with an inner radius of 4 cm and an outer radius of 6 cm, has charge spread non uniformly throu
Aloiza [94]
In other words a infinitesimal segment dV caries the charge 
<span>dQ = ρ dV </span>

<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>

<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>

<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
6 0
3 years ago
The surface of the Earth changes from processe such as erosion. Which of these changes to Earth's surface is an example of erosi
Ad libitum [116K]

Answer:

D. the wind picking up dust and carrying it

Explanation:

Erosion is a process in which an agent transfer the top soil to another region, thereby exposing the lower soil. These agents have the ability to move the top layer of soil and deposit it at another place. The major agents in this case are; a running or flowing body of water and wind.

Therefore, the change to the Earth's surface that is an example of erosion is the wind picking up dust and carrying it. Thereby exposing the lower layers.

6 0
3 years ago
A deep space probe travels in a straight line at a constant speed of over 16,000 m/s. Assuming there is no friction in space, if
diamong [38]

Answer:

I believe that the answer is d.

Explanation:

Because there is nothing to make the aircraft accelerate or decelerate, it is going to stay in constant motion with no acceleration.

3 0
3 years ago
Other questions:
  • What is second law of netwons​
    15·2 answers
  • A train travels 120 km in 2 hours and 30 minutes. What is its average speed?
    6·2 answers
  • Is net force the same thing as gravity
    11·1 answer
  • What is it called when a falling object stops accelerating while it is still falling?
    6·1 answer
  • What is the product of an object’s mass and velocity? momentum net force kinetic energy
    6·1 answer
  • 1
    10·1 answer
  • A car's gas tank contains 58.7 kg
    10·1 answer
  • Meher is riding a bicycle on a slope. explain the different motions taking place during this time​
    6·1 answer
  • A mystery fluid has a density of 6.45kg/m^3 . If 2.34 kg are put into a container, what is the volume of the sample?
    13·1 answer
  • If you know all of the forces acting on a moving object, can you tell in which direction the object is moving? if the answer is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!