Covalent bonds or interactions are overcome when a nonmetal extended network melts.
Typically, nonmetals form covalent bonds with one another. A polyatomic ion's atoms are joined by a form of link called covalent bonding. A covalent bond requires two electrons, one from each of the two atoms that are connecting.
One technique to depict the formation of covalent connections between atoms is with Lewis dot formations. The number of unpaired electrons and the number of bonds that can be formed by each element are typically identical. Each element needs to share an unpaired electron in order to establish a covalent bond.
Therefore, covalent bonds or interactions are overcome when a nonmetal extended network melts.
Learn more about covalent bonds here;
brainly.com/question/10777799
#SPJ4
In the reaction of silver nitrate with copper metal, metallic silver comes out of solution, and the solution turns blue. This as a <u>single replacement</u> reaction.
<h3>What is
single replacement reaction?</h3>
A single replacement reaction, also known as a single displacement reaction, occurs when one element in a molecule is swapped out for another. The starting materials are always pure elements, such as a pure zinc metal or hydrogen gas, plus an aqueous compound.
A + BC → B + AC
When A is more reactive than B or when the product AC is more stable than BC, single replacement reactions happen. A and B could either be two halogens or two metals (with hydrogen included) (C is a cation). C functions as a spectator ion when BC and AC are in aqueous solutions.
For example, 2HCl(aq)+Zn(s)→ZnCl₂(aq)+H₂(g)
Learn more about single replacement reactions here:
brainly.com/question/19068047
#SPJ4
Answer:
V = 22.42 L/mol
N₂ and H₂ Same molar Volume at STP
Explanation:
Data Given:
molar volume of N₂ at STP = 22.42 L/mol
Calculation of molar volume of N₂ at STP = ?
Comparison of molar volume of H₂ and N₂ = ?
Solution:
Molar Volume of Gas:
The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol
Molar volume can be calculated by using ideal gas formula
PV = nRT
Rearrange the equation for Volume
V = nRT / P . . . . . . . . . (1)
where
P = pressure
V = Volume
T= Temperature
n = Number of moles
R = ideal gas constant
Standard values
P = 1 atm
T = 273 K
n = 1 mole
R = 0.08206 L.atm / mol. K
Now put the value in formula (1) to calculate volume for 1 mole of N₂
V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm
V = 22.42 L/mol
Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.
Well the width is 0.20 meters. Since there are a hundred centimeters in a meter, we just have to move the decimal point two times to the right to get a 20 centimeter width.
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.