Runner 2 sees Runner 1 passing him with a velocity of 17 m/s west.
Answer:
The initial speed of the cork was 1.57 m/s.
Explanation:
Hi there!
The equation of the horizontal position of the cork in function of time is the following:
x = x0 + v0 · t · cos θ
Where:
x = horizontal position at time t.
x0 = initial horizontal position.
v0 = initial speed of the cork.
t = time.
θ = launching angle.
If we place the origin of the frame of reference at the launching point, then x0 = 0.
We know that at t = 1.25 s, x = 1.50 m. We also know the launching angle so we can solve the equation of horizontal position for the initial speed, v0:
x = v0 · t · cos θ
x / t · cos θ = v0
v0 = 1.50 m / (1.25 s · cos (40.0°)
v0 = 1.57 m/s
The initial speed of the cork was 1.57 m/s.
Answer:
16.1 N
Explanation:
From the question,
F = ma.............................. Equation 1
Where F = horizontal force, m = mass of the object, a = acceleration .
Given: m = 7.0 kg, a = 2.3 m/s²
Substitute this values into equation 1
F = (7.0×2.3)
F = 16.1 N.
Hence the magnitude of the horizontal force is 16.1 N
Solve the equation.it is hard to see