Answer:
Use either a vinegar, Borax, or bleach solution in a spray bottle to tackle the mold. Simply spray the solution on showers, baths, basins, tiles, grout, or caulking. Then use either a cleaning cloth or a toothbrush to remove the slime
Answer:
The final temperature at 1050 mmHg is 134.57
or 407.57 Kelvin.
Explanation:
Initial temperature = T = 55
= 328 K
Initial pressure = P = 845 mmHg
Assuming final to be temperature to be T' Kelvin
Final Pressure = P' = 1050 mmHg
The final temperature is obtained by following relation at constant volume

The final temperature is 407.57 K
The oceanographers define salinity by the number of grams of salt per kilogram of water.
Salinity is illustrated as how much salt is present in the given amount of water. It is dependent upon how much salt is found in the ocean in the specific regions. If there is a sunny environment, it may evaporate an ample amount of water, and leave behind a lot of salt, thus, the water has more salinity.
The salinity of the ocean is usually measured in Practical Salinity Unit (PSU), it is a unit based on the characteristics of seawater conductivity.
Answer:
The sediments accumulating on and around mid-ocean ridges are mostly formed from the calcareous and siliceous tests of pelagic organisms. This research is concerned with understanding how the rate of sediment supply varies from place to place due to varied productivity of pelagic organisms, how the sediments accumulate on the complex topography of a mid-ocean ridge, and with using the sediments to study mid-ocean ridge processes such as faulting and volcanism.
Sediment transport and accumulation
When pelagic materials reach the seafloor, they are redistributed by bottom currents and by sedimentary flows. This work studied the form of the accumulation using sediment profiler records collected with a Deep Tow system from the Scripps Institution of Oceanography deployed over the Mid-Atlantic Ridge in the early 1970s. The records showed that both sets of transport processes are important. The shapes of deposits were studied to see to what extent they conform to the diffusion transport model - many deposits have parabolic surfaces, which are the steady state forms expected from the diffusion transport model under boundary conditions of constant input or output flux to basins.