Answer:
Explanation:
1.) What is the net force in the horizontal (x) direction?
Fnet = 8 - 3 = 5 N left
2.) what is the acceleration in the horizontal (x) direction?
a = Fnet/m = 5/2 = 2.5 m/s² left
The resultant in the x-direction:
Rx = F1 + F2 = 2.5 N - 1 N = 1.5 N .
The resultant in the y-direction:
Ry = F3 + F4 = 2 N - 3 N = -1 N.
In order to determine the angle of the refracted ray, we may apply Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is constant for a given wave when it passes through two different media. Mathematically, this is:
n₁sin(∅₁) = n₂sin(∅₂)
Where n is the refractive index. Substituting the values given into the equation:
1.0003 * sin(20°) = 1.33 * sin(∅)
∅ = 14.91
The angle of the refracted ray is 15°.
The answer is believed to be C because the evidence is from fossils and glaciers.
Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm