I believe the answer is energy
From the information given, The mass of the bowling ball is 8 Kilograms and the momentum with which it is moving is 16 kg m/s.
We use the formula p = m × v
Where p is the momentum, m is the mass and v is the velocity.
We need velocity so we rewrite the equation thus:
P = mv, therefore p/m = v or v = p/m
In our case p = 16 and m = 8
v = p/m
v = 16/8
v = 2
Therefore the bowling ball is travelling at 2m/s
Answer:
28,400 N
Explanation:
Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

On the lower part of the hatch, there is a pressure equal to

So, the net pressure acting on the hatch is

which acts from above.
The area of the hatch is given by:

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:
