Answer:
0.171 M
Explanation:
Step 1: Given data
- Mass of H₃PO₄ (solute): 3.35 g
- Volume of solution (V): 200 mL
Step 2: Calculate the moles of solute
The molar mass of H₃PO₄ is 97.99 g/mol.
3.35 g × 1 mol/97.99 g = 0.0342 mol
Step 3: Convert "V" to liters
We will use the conversion factor 1 L = 1000 mL.
200 mL × 1 L/1000 mL = 0.200 L
Step 4: Calculate the molarity of the solution
We will use the definition of molarity.
M = moles of solute / liters of solution
M = 0.0342 mol/0.200 L = 0.171 M
Method:
1) Find the atomic number in a periodic table: the number of electrons equal the atomic number
2) Use Aufbau rule
Element atomic number electron configuration
<span>
P 15 1s2 2s2 2p6 3s2 3p3
Ca 20 </span><span><span>1s2 2s2 2p6 3s2 3p6 4s2
</span>Si 14</span><span> 1s2 2s2 2p6 3s2 3p2
S 16</span><span><span> 1s2 2s2 2p6 3s2 3p4
</span>Ga 31. </span><span><span> 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p</span> </span>
Answer : The mass in grams of calcium sulfate is 0.16 grams.
Explanation :
Molarity : It is defined as the number of moles of solute present in one litre of solution.
Formula used :

Solute is, 
Given:
Molarity of
= 0.0025 mol/L
Molar mass of
= 136 g/mole
Volume of solution = 485 mL
Now put all the given values in the above formula, we get:


Thus, the mass in grams of calcium sulfate is 0.16 grams.
Oil consists of many B. Covalent bonds between the nonmetals of Carbon, hydrogen and oxygen.
Answer:
The water cycle is driven primarily by the energy from the sun. This solar energy drives the cycle by evaporating water from the oceans, lakes, rivers, and even the soil. Other water moves from plants to the atmosphere through the process of transpiration.