Alkaline earth metals are metals of group two. They are divalent metals and they have a highly negative reduction potential hence the metals are mostly extracted by electrolysis.
They are highly reactive metals. They react with water but do so less readily than alkali earth metals.
Owing to their high reactivity, they are seldom found free in nature. They always occur in combined state with other highly reactive nonmetals.
Answer: Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ...
Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Answer:
e. UDP-glucose pyrophosphorylase catalyzes the reaction of glucose-I-phosphate and UTP to UDP-glucose and PPi
a. Pyrophosphatase converts PPi and water into two Pi
b. Glycogen synthase adds a glucose unit from UDP-glucose to glycogen, producing a larger glycogen molecule and UDP
Explanation:
Glycogen synthesis or glycogenesis is the process of synthesis of glycogen molecules from glucose molecules in living organisms. Glycogen is a polysaccharide storage form of glucose and helps to store excess glucose in the body form use when required by the body.
The synthesis of glycogen involves sugar nucleotides. Sugar nucleotides are compounds in which a sugar molecule is attached to a nucleotide through phosphate ester bond, resulting in the activation of the sugar molecule. The sugar nucleotides then are used as substrates for the polymerization of the monosaccharide sugars into disaccharides, oligosaccharides and polysaccharides.
In the synthesis of glycogen, glucose-6-phosphate from phosphorylation of free glucose by hexokinase is first isomerized to glucose-1-phosphate by phosphoglucomutase.
Glucose-1-phosphate is then converted to UDP-glucose by its reaction with UTP catalyse by UDP-glucose pyrophosphorylase. The reaction is favoured by the rapid hydrolysis of PPi produced to two molecules of inorganic phosphate by the enzyme pyrophosphatase.
Glycogen synthase then adds a glucose unit from UDP-glucose to a growing chain of glycogen, producing a larger glycogen molecule and free UDP.