Answer:
See explanation
Explanation:
a. I can conclusively tell if the crown was made of gold by measuring its density. First the mass of the crown is measured on a weighing balance. The crown is now put into a given volume of water and the volume of water displaced is accurately measured. The density of the crown is computed as mass/volume of fluid displaced. If the density of the crown is 19.3 g/mL, then it is made of solid gold.
b) When less valuable metals such as bronze or copper is mixed with gold in the crown, the density of the crown decreases and the crown becomes more brittle.
c) An object will float in a liquid when the density of the object is less than the density of the liquid. Hence the tendency of an object to float in a liquid depends on the density of the object and the density of the liquid.
d) Even though i do not know the results from your experiment but as regards the decision as to whether the object will float in the given liquid or not, reference must be made to the measured density of the object as well as the given density of the liquid. If the object is less dense (from values of density obtained from the experiment) than the liquid, then the object will float in the liquid and vice versa.
Answer:
A
Explanation:
A: Metals are ofthen the best conductors.
B: Metals and non-metals can be smooth or rough
C: Metals and non-metals can be hard to the touch
D: Metals and non-metals can float in water
<u>Answer:</u> The
for HCN (g) in the reaction is 135.1 kJ/mol.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(HCN)})+(6\times \Delta H_f_{(H_2O)})]-[(2\times \Delta H_f_{(NH_3)})+(3\times \Delta H_f_{(O_2)})+(2\times \Delta H_f_{(CH_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-870.8=[(2\times \Delta H_f_{(HCN)})+(6\times (-241.8))]-[(2\times (-80.3))+(3\times (0))+(2\times (-74.6))]\\\\\Delta H_f_{(HCN)}=135.1kJ](https://tex.z-dn.net/?f=-870.8%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28-80.3%29%29%2B%283%5Ctimes%20%280%29%29%2B%282%5Ctimes%20%28-74.6%29%29%5D%5C%5C%5C%5C%5CDelta%20H_f_%7B%28HCN%29%7D%3D135.1kJ)
Hence, the
for HCN (g) in the reaction is 135.1 kJ/mol.
342.3 g/mol
11 times 16
22 times 1
12 times 12
and then add them together
<em>The instrument we use to measure seismic waves is the </em><em>seismometer, or seismograph, </em><em>those are two ways to name it.</em>
<em>Glad to help ya!! :)</em>