The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
C- 10ft. Hope this helped. Have a great day! :D
Answer:
N = 6.67 N
Explanation:
The frictional or frictional force is a force that arises from the contact of two bodies and opposes movement.
The friction is due to imperfections and roughness, mainly microscopic, that exist on the surfaces of the bodies. Upon contact, these roughnesses engage with each other making movement difficult. To minimize the effect of friction, either the surfaces are polished or lubricated, since the oil fills the imperfections, preventing them from snagging.
As the frictional force depends on the materials and the force exerted on one another, its magnitude is obtained by the following expression:
f = μ*N Formula (1)
where:
f is the friction force (N)
μ is the coefficient of friction
N is the normal force (N)
Data
f = 0.2 N : frictional force between the steel spatula and the Oiled Steel frying pan
μ = 0.03 :coefficient of kinetic friction between the two materials
Calculating of normal force
We replace data in the formula (1)
f = μ*N
0.2 = 0.03*N
N = 0.2 / 0.03
N = 6.67 N
Answer:
Explanation:
Far point = 17 cm . That means he can not see beyond this distance .
He wants to see at an object at 65 cm away . That means object placed at 65 has image at 17 cm by concave lens . Using lens formula
1 / v - 1 / u = 1 / f
1 / - 17 - 1 / - 65 = 1 / f
= 1 / 65 - 1 / 17
= - .0434 = 1 / f
power = - 100 / f
= - 100 x .0434
= - 4.34 D .
Answer:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field, direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
Explanation:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field and direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
The magnetic force is given by the charge times the vector product of velocity and magnetic field. While gravitational force is given by the square of the particle mass divided by the square its distance of separation. Also electric forces is given by the square of the charge magnitude divided by the square its distance separation.