Answer:
(A) 9.5 m/s
(B) 5.225 m
Explanation:
vertical height (h) = 4.7 m
horizontal distance (d) = 9.3 m
acceleration due to gravity (g) = 9.8 m/s^{2}
initial speed of the fish (u) = 0 m/s
(A) what is the pelicans initial speed ?
- lets first calculate the time it took the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.98 s
- pelicans initial speed = speed of the fish
speed of the fish = distance / time = 9.3 / 0.98 = 9.5 m/s
initial speed of the pelican = 9.5 m/s
(B) If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?
vertical height = 1.5 m
pelican's speed = 9.5 m/s
- lets also calculate the time it will take the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.55 s
distance traveled by the fish = speed x time = 9.5 x 0.55 = 5.225 m
The equation for momentum is p =
mv where p is the omentum, m is the mass and v is the velocity. Calculating the
momentum for each football player, player A will have a momentum of 1050
lb-mi/h and player B will have a momentum of 570 lb-mi/h. Therefore, momentum of player A is greater than that of
player B.
In collision of the steel ball and the steel plate, the collision is an inelastic collision and there is loss in the kinetic energy.
<h3>What are collisions?</h3>
Collisions occur when two objects that are moving in the same directions or in different direction meet each other and collide.
There are two types of collisions:
- elastic collision - the kinetic energy is conserved
- inelastic collision - there is a loss in kinetic energy
In the collision of the steel ball and the steel plate, there is loss in the kinetic energy of the steel ball which is converted to sound energy.
In conclusion, the collision of the steel and steel plate is an inelastic collision.
Learn more about collisions at: brainly.com/question/7694106
#SPJ1