The series circuit has the higher equivalent resistance, but to find the larger equivalent resistance you have to use Ohm's law (V2=I2R2), the power dissipated by the resistor can also be found using P2=I22R2=V22R2. To find the equivalent resistance of the circuit, notice that the parallel connection of R2 and R3 is in series with R1, so the equivalent resistance is Req=R1+(1R2+1R3)−1=1.00Ω+(16.00Ω+113.00Ω)−1=5.10Ω.
Hope this helps!
Please give Brainliest!
Answer:
Repulsion is the sure test for magnetism because it occurs only when two like poles of a magnet exist while the attraction phenomenon can occur between two unlike poles of a magnet and also between a magnet and a magnetic material means if there are two magnets they will attract each other and suppose if one material
Answer:
(C) 2P
Explanation:
Ideal gas law states:
PV = nRT
n (the number of moles) and R (ideal gas constant) are constant, so we can say:
(PV / T) before = (PV / T) after
Chamber X starts at pressure P, volume V, and temperature T. At equilibrium, the pressure is Px, the volume is Vx, and temperature 3T.
PV / T = Px Vx / 3T
Chamber Y starts at pressure P, volume V, and temperature T. At equilibrium, the pressure is Py, the volume is Vy, and temperature T.
PV / T = Py Vy / T
Substituting and simplifying:
Px Vx / 3T = Py Vy / T
Px Vx / 3 = Py Vy
Since the chambers are at equilibrium, Px = Py:
Vx / 3 = Vy
Vx = 3 Vy
The total volume is the same as before, so:
Vx + Vy = 2V
Substituting:
(3 Vy) + Vy = 2V
4 Vy = 2V
Vy = V / 2
Now if we substitute into our equation for chamber Y:
PV / T = Py (V/2) / T
PV = Py (V/2)
Py = 2P
The pressure in chamber Y (and chamber X) doubles at equilibrium.
What is the structure of a hydrocarbon that has $\mathrm{M}^{+}=120$ in its mass spectrum and has the following $1 \mathrm{H}$ NMR spectrum? 7.25 $\delta(5 \mathrm{H}, \text { broad singlet); } 2.90 \delta(1 \mathrm{H}, \text { septet, } J=7 \mathrm{Hz}) ; 1.22 \delta(6 \mathrm{H},\text { doublet, }$ $J=7 \mathrm{Hz})$