Answer:
describes properties characteristic of no more than two electrons in the vicinity of an atomic nucleus or of a system of nuclei as in a molecule
Answer:
A
Explanation:
The answer A is the best answer because it contains the most general characteristic of a chemical change.
Answer:
C: The temperature of the substance increases as it sits in the beaker of water
Explanation:
This question was taken from a video where an attempt was made to investigate the changes in temperature when a substance undergoes change from it's solid phase to its liquid phase.
To do this, as seen in the video online, it shows a solid substance in a test tube being placed in a beaker of water.
From observation, the water in the beaker has a warmer temperature than the solid substance present in the test tube and this in turn makes the test tube gradually increase in temperature.
Thus, the solid substance will as well increase increase in temperature when it is placed in the beaker of water.
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)