Answer:
CaS, CaBr₂, VBr₅, and V₂S₅.
Explanation:
- The ionic compound should be neutral; the overall charge of it is equal to zero.
- Binary ionic compound is composed of two different ions.
<u>Ca²⁺ can combined with either Br⁻ or S²⁻ to form binary ionic compounds.</u>
- CaS can be formed via combining Ca²⁺ with S²⁻ to form the neutral binary ionic compound CaS.
- CaBr₂ can be formed via combining 1 mole of Ca²⁺ with 2 moles of Br⁻ to form the neutral binary ionic compound CaBr₂.
<u>V⁵⁺ can combined with either Br⁻ or S²⁻ to form binary ionic compounds.</u>
- V₂S₅ can be formed via combining 2 moles of V⁵⁺ with 5 moles of S²⁻ to form the neutral binary ionic compound V₂S₅.
- VBr₅ can be formed via combining 1 mole of V⁵⁺ with 5 moles of Br⁻ to form the neutral binary ionic compound VBr₅.
<em>So, the empirical formula of four binary ionic compounds that could be formed is: CaS, CaBr₂, VBr₅, and V₂S₅.</em>
<em></em>
Answer:
D. All of the above
Explanation:
E = MC² is a common equation in physics.
E is energy
M is mass
C is the speed of light
The law was stated by Albert Einstein.
- From this law, it was shown that energy is released when matter is destroyed.
- Mass and energy are equivalent as seen in nuclear reactions where mass is converted to energy.
- Mass and energy is usually conserved in any process and this is a subtle modification of the law of conservation of matter and energy.
- Most of these postulates apply to nuclear reactions which generally do not follow some precepts of chemical laws.
Answer is 10 units of water molecules.
Answer:
Explanation:
Ketcher 01232019462D 1 1.00000 0.00000 0 5 4 0 0 0 999 V2000 -0.0330 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 2.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 3.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 1.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 2 3 1 0 0 0 2 4 1 0 0 0 3 5 1 0 0 0 M END
Answer:
0.2402 M
Explanation:
0.945 L sol contains = 0.227 moles
1 L sol will contain = (0.227/0.945)*1 = 0.2402 moles
Molarity = 0.2402 moles/L or M