Answer:
stop and might even crash
Explanation:
Answer:
a) ![\mathbf{\sigma _ 1 = 4800 psi}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Csigma%20_%201%20%3D%204800%20psi%7D)
![\mathbf{ \sigma _2 = 0}](https://tex.z-dn.net/?f=%5Cmathbf%7B%20%5Csigma%20_2%20%3D%200%7D)
b)![\mathbf{\sigma _ 1 = 6000 psi}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Csigma%20_%201%20%3D%206000%20psi%7D)
![\mathbf{ \sigma _2 = 3000 psi}](https://tex.z-dn.net/?f=%5Cmathbf%7B%20%5Csigma%20_2%20%3D%203000%20psi%7D)
Explanation:
Given that:
diameter d = 12 in
thickness t = 0.25 in
the radius = d/2 = 12 / 2 = 6 in
r/t = 6/0.25 = 24
24 > 10
Using the thin wall cylinder formula;
The valve A is opened and the flowing water has a pressure P of 200 psi.
So;
![\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}](https://tex.z-dn.net/?f=%5Csigma_%7Bhoop%7D%20%3D%20%5Csigma%20_%201%20%3D%20%5Cfrac%7BPd%7D%7B2t%7D)
![\sigma_{long} = \sigma _2 = 0](https://tex.z-dn.net/?f=%5Csigma_%7Blong%7D%20%3D%20%5Csigma%20_2%20%3D%200)
![\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{200(12)}{2(0.25)}](https://tex.z-dn.net/?f=%5Csigma%20_%201%20%3D%20%5Cfrac%7BPd%7D%7B2t%7D%20%5C%5C%20%5C%5C%20%5Csigma%20_%201%20%3D%20%5Cfrac%7B200%2812%29%7D%7B2%280.25%29%7D)
![\mathbf{\sigma _ 1 = 4800 psi}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Csigma%20_%201%20%3D%204800%20psi%7D)
b)The valve A is closed and the water pressure P is 250 psi.
where P = 250 psi
![\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}](https://tex.z-dn.net/?f=%5Csigma_%7Bhoop%7D%20%3D%20%5Csigma%20_%201%20%3D%20%5Cfrac%7BPd%7D%7B2t%7D)
![\sigma_{long} = \sigma _2 = \frac{Pd}{4t}](https://tex.z-dn.net/?f=%5Csigma_%7Blong%7D%20%3D%20%5Csigma%20_2%20%3D%20%5Cfrac%7BPd%7D%7B4t%7D)
![\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{250*(12)}{2(0.25)}](https://tex.z-dn.net/?f=%5Csigma%20_%201%20%3D%20%5Cfrac%7BPd%7D%7B2t%7D%20%5C%5C%20%5C%5C%20%5Csigma%20_%201%20%3D%20%5Cfrac%7B250%2A%2812%29%7D%7B2%280.25%29%7D)
![\mathbf{\sigma _ 1 = 6000 psi}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Csigma%20_%201%20%3D%206000%20psi%7D)
![\sigma _2 = \frac{Pd}{4t} \\ \\ \sigma _2 = \frac{250(12)}{4(0.25)}](https://tex.z-dn.net/?f=%5Csigma%20_2%20%3D%20%5Cfrac%7BPd%7D%7B4t%7D%20%5C%5C%20%5C%5C%20%20%5Csigma%20_2%20%3D%20%5Cfrac%7B250%2812%29%7D%7B4%280.25%29%7D)
![\mathbf{ \sigma _2 = 3000 psi}](https://tex.z-dn.net/?f=%5Cmathbf%7B%20%5Csigma%20_2%20%3D%203000%20psi%7D)
The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below
Answer:
a)
, b) ![U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}](https://tex.z-dn.net/?f=U_%7Bo%7D%20%5Capprox%200.63%5C%2C%5Cfrac%7BkW%7D%7Bm%5E%7B2%7D%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D)
Explanation:
a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:
![c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}](https://tex.z-dn.net/?f=c_%7Bp%2Cc%7D%20%3D%204.186%5C%2C%5Cfrac%7BkJ%7D%7Bkg%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D)
The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:
![\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}](https://tex.z-dn.net/?f=%5Cepsilon%20%3D%20%5Cfrac%7B1-e%5E%7B-NTU%5Ccdot%281-c%29%7D%7D%7B1-c%5Ccdot%20e%5E%7B-NTU%5Ccdot%20%281-c%29%7D%7D)
The capacity ratio is:
![c = \frac{C_{min}}{C_{max}}](https://tex.z-dn.net/?f=c%20%3D%20%5Cfrac%7BC_%7Bmin%7D%7D%7BC_%7Bmax%7D%7D)
![c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}](https://tex.z-dn.net/?f=c%20%3D%20%5Cfrac%7B%281%5C%2C%5Cfrac%7Bkg%7D%7Bs%7D%20%29%5Ccdot%284.186%5C%2C%5Cfrac%7BkW%7D%7Bkg%5E%7B%5Ctextdegree%7DC%7D%20%29%7D%7B%281.8%5C%2C%5Cfrac%7Bkg%7D%7Bs%7D%20%29%5Ccdot%284.30%5C%2C%5Cfrac%7BkW%7D%7Bkg%5E%7B%5Ctextdegree%7DC%7D%20%29%7D)
![c = 0.541](https://tex.z-dn.net/?f=c%20%3D%200.541)
Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that
. The efectiveness of the heat exchanger is:
![\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}](https://tex.z-dn.net/?f=%5Cepsilon%20%3D%20%5Cfrac%7B1-e%5E%7B-%282.5%29%5Ccdot%281-0.541%29%7D%7D%7B1-%282.5%29%5Ccdot%20e%5E%7B-%282.5%29%5Ccdot%20%281-0.541%29%7D%7D)
![\epsilon \approx 0.824](https://tex.z-dn.net/?f=%5Cepsilon%20%5Capprox%200.824)
The real heat transfer rate is:
![\dot Q = \epsilon \cdot \dot Q_{max}](https://tex.z-dn.net/?f=%5Cdot%20Q%20%3D%20%5Cepsilon%20%5Ccdot%20%5Cdot%20Q_%7Bmax%7D)
![\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})](https://tex.z-dn.net/?f=%5Cdot%20Q%20%3D%20%5Cepsilon%20%5Ccdot%20C_%7Bmin%7D%5Ccdot%20%28T_%7Bh%2Cin%7D-T_%7Bc%2Cin%7D%29)
![\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)](https://tex.z-dn.net/?f=%5Cdot%20Q%20%3D%20%280.824%29%5Ccdot%20%284.186%5C%2C%5Cfrac%7BkW%7D%7B%5E%7B%5Ctextdegree%7DC%7D%20%29%5Ccdot%20%28160%5E%7B%5Ctextdegree%7DC-18%5E%7B%5Ctextdegree%7DC%29)
![\dot Q = 489.795\,kW](https://tex.z-dn.net/?f=%5Cdot%20Q%20%3D%20489.795%5C%2CkW)
The exit temperature of the hot fluid is:
![\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})](https://tex.z-dn.net/?f=%5Cdot%20Q%20%3D%20%5Cdot%20m_%7Bh%7D%5Ccdot%20c_%7Bp%2Ch%7D%5Ccdot%20%28T_%7Bh%2Cin%7D-T_%7Bh%2Cout%7D%29)
![T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}](https://tex.z-dn.net/?f=T_%7Bh%2Cout%7D%20%3D%20T_%7Bh%2Cin%7D%20-%20%5Cfrac%7B%5Cdot%20Q%7D%7B%5Cdot%20m_%7Bh%7D%5Ccdot%20c_%7Bp%2Ch%7D%7D)
![T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}](https://tex.z-dn.net/?f=T_%7Bh%2Cout%7D%20%3D%20160%5E%7B%5Ctextdegree%7DC%20%2B%20%5Cfrac%7B489.795%5C%2CkW%7D%7B%287.74%5C%2C%5Cfrac%7BkW%7D%7B%5E%7B%5Ctextdegree%7DC%7D%20%29%7D)
![T_{h,out} = 96.719^{\textdegree}C](https://tex.z-dn.net/?f=T_%7Bh%2Cout%7D%20%3D%2096.719%5E%7B%5Ctextdegree%7DC)
The log mean temperature difference is determined herein:
![\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }](https://tex.z-dn.net/?f=%5CDelta%20T_%7Blm%7D%20%3D%20%5Cfrac%7B%28T_%7Bh%2Cin%7D-T_%7Bc%2C%20out%7D%29-%28T_%7Bh%2Cout%7D-T_%7Bc%2Cin%7D%29%7D%7B%5Cln%5Cfrac%7BT_%7Bh%2Cin%7D-T_%7Bc%2C%20out%7D%7D%7BT_%7Bh%2Cout%7D-T_%7Bc%2Cin%7D%7D%20%7D)
![\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }](https://tex.z-dn.net/?f=%5CDelta%20T_%7Blm%7D%20%3D%20%5Cfrac%7B%28160%5E%7B%5Ctextdegree%7DC-78%5E%7B%5Ctextdegree%7DC%29-%2896.719%5E%7B%5Ctextdegree%7DC-18%5E%7B%5Ctextdegree%7DC%29%7D%7B%5Cln%5Cfrac%7B160%5E%7B%5Ctextdegree%7DC-78%5E%7B%5Ctextdegree%7DC%7D%7B96.719%5E%7B%5Ctextdegree%7DC-18%5E%7B%5Ctextdegree%7DC%7D%20%7D)
![\Delta T_{lm} \approx 80.348^{\textdegree}C](https://tex.z-dn.net/?f=%5CDelta%20T_%7Blm%7D%20%5Capprox%2080.348%5E%7B%5Ctextdegree%7DC)
The heat transfer surface area is:
![A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}](https://tex.z-dn.net/?f=A_%7Bi%7D%20%3D%20%5Cfrac%7B%5Cdot%20Q%7D%7BU_%7Bi%7D%5Ccdot%20%5CDelta%20T_%7Blm%7D%7D)
![A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }](https://tex.z-dn.net/?f=A_%7Bi%7D%20%3D%20%5Cfrac%7B489.795%5C%2CkW%7D%7B%280.63%5C%2C%5Cfrac%7BkW%7D%7Bm%5E%7B2%7D%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D%20%29%5Ccdot%2880.348%5E%7B%5Ctextdegree%7DC%29%20%7D)
![A_{i} = 9.676\,m^{2}](https://tex.z-dn.net/?f=A_%7Bi%7D%20%3D%209.676%5C%2Cm%5E%7B2%7D)
Length of a single pass counter flow heat exchanger is:
![L =\frac{A_{i}}{\pi\cdot D_{i}}](https://tex.z-dn.net/?f=L%20%3D%5Cfrac%7BA_%7Bi%7D%7D%7B%5Cpi%5Ccdot%20D_%7Bi%7D%7D)
![L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7B9.676%5C%2Cm%5E%7B2%7D%7D%7B%5Cpi%5Ccdot%20%280.014%5C%2Cm%29%7D)
![L = 220\,m](https://tex.z-dn.net/?f=L%20%3D%20220%5C%2Cm)
b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.
![U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}](https://tex.z-dn.net/?f=U_%7Bo%7D%20%5Capprox%200.63%5C%2C%5Cfrac%7BkW%7D%7Bm%5E%7B2%7D%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D)
C. Route and roadways defined as class I highways
Answer:
6 houses
Explanation:
because
2hrs=4 houses which means you are cleaning 2houses in one hour
so in 3 hours you will houses because you will clean 2 houses in one hour
I hope this helped you sorry if I am wrong