1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
3 years ago
8

Which tool is used to measure movement automotive

Engineering
1 answer:
Schach [20]3 years ago
3 0

Answer:

Speedometer

It shows our speed, or how fast we're moving.

You might be interested in
If the old radiator is replaced with a new one that has longer tubes made of the same material and same thickness as those in th
Nookie1986 [14]

Answer: hello some parts of your question is missing attached below is the missing information

The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d  is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube

answer : Total surface area = 3/2 * area of old radiator

Explanation:

we will use this relation

K = \frac{Qd }{A* change in T }

change in T =  ΔT  

therefore New Area  ( A ) = 3/2 * area of old radiator

Given that the thermal conductivity is the same in the new and old radiators

3 0
3 years ago
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
HELP PLS
Angelina_Jolie [31]

Answer:

The correct option is;

B) Metamorphic Rocks

Explanation:

Zoisite, which is also referred to saualpite, is a metamorphic rock which is a hydroxy sorosilicate mineral formed from other types of rocks such as sedimentary, metamorphic and ingenious rocks in the process of their metamorphism under the presence high temperatures and pressures and mineral fluids which are hot

Zoiste is named after Sigmund Zois by Abraham Gottlob Werner in 1805 when Sigmund Zois sent Abraham Gottlob Werner the mineral specimen from Saualpe in 1805

6 0
3 years ago
Explain why the following scenario fails to meet the definition of a project description.
s344n2d4d5 [400]

Answer:

The youth hockey training facility

Explanation:

7 0
3 years ago
An excavation is at risk for cave-in and water accumulation because of the excess soil that has accumulated. What type of excava
s344n2d4d5 [400]

Answer:

Among the different types of excavation protection system, as a way of preventing accidents against cave-ins, the sloping involves cutting back the trench wall at an angle inclined away from the excavation. Shoring requires installing aluminum hydraulic or other types of supports to prevent soil movement and cave-ins. Shielding protects workers by using trench boxes or other types of supports to prevent soil cave-ins (OSHA). In addition, the regulations do not allow employees to work on excavations where there is an accumulation of water. If this occurs, water on the site must be constantly removed by suitable equipment preventing water from accumulating. The entry of surface water into the excavations must also be prevented by means of diversion ditches, dam, or other suitable means.  

Explanation:

3 0
3 years ago
Other questions:
  • The period of a pendulum T is assumed to depend only on the mass m, the length of the pendulum `, the acceleration due to gravit
    9·1 answer
  • A strip of AISI 304 stainless steel, 2mm thick by 3cm wide, at 550°C, continuously enters a cooling chamber that removes heat at
    12·1 answer
  • James River Jewelry is a small jewelry shop. While James River Jewelry does sell typical jewelry purchased form jewelry vendors,
    15·1 answer
  • Input Energy ---&gt; Output Energy
    8·1 answer
  • What is the difference between tension and compression?
    9·1 answer
  • Consider a voltage v = Vdc + vac where Vdc = a constant and the average value of vac = 0. Apply the integral definition of RMS t
    7·1 answer
  • Explain why different types of equipment are required for proper conditioning of air
    7·1 answer
  • Why would Chris most likely conclude that he should seek help? A. He feels in control of his emotions even though people annoy h
    15·2 answers
  • Which of the following is not true about manufacturing employment in the U.S?
    15·1 answer
  • A machine used to shred cardboard boxes for composting has a first cost of $10,000, an AOC of $7000 per year, a 3-year life, and
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!