Answer:
Explanation:
For example, an ice cube has heat energy and so does a glass of lemonade. If you put the ice in the lemonade, the lemonade (which is warmer) will transfer some of its heat energy to the ice.
Separate the barriers so they have a 2cm gap between them.
Yes, because you would need friction to slow down the rollercoaster to a stop.
Answer:
The wavelength is ![\lambda_2 = 534 *10^{-9} \ m](https://tex.z-dn.net/?f=%5Clambda_2%20%3D%20%20534%20%2A10%5E%7B-9%7D%20%5C%20m)
Explanation:
From the question we are told that
The wavelength of the first light is ![\lambda _ 1 = 587 \ nm](https://tex.z-dn.net/?f=%5Clambda%20_%201%20%3D%20%20587%20%5C%20nm)
The order of the first light that is being considered is
The order of the second light that is being considered is
Generally the distance between the fringes for the first light is mathematically represented as
![y_1 = \frac{ m_1 * \lambda_1 * D}{d}](https://tex.z-dn.net/?f=y_1%20%3D%20%20%5Cfrac%7B%20m_1%20%20%2A%20%5Clambda_1%20%2A%20%20D%7D%7Bd%7D)
Here D is the distance from the screen
and d is the distance of separation of the slit.
For the second light the distance between the fringes is mathematically represented as
![y_2 = \frac{ m_2 * \lambda_2 * D}{d}](https://tex.z-dn.net/?f=y_2%20%3D%20%20%5Cfrac%7B%20m_2%20%20%2A%20%5Clambda_2%20%2A%20%20D%7D%7Bd%7D)
Now given that both of the light are passed through the same double slit
![\frac{y_1}{y_2} = \frac{\frac{m_1 * \lambda_1 * D}{d} }{\frac{m_2 * \lambda_2 * D}{d} } = 1](https://tex.z-dn.net/?f=%5Cfrac%7By_1%7D%7By_2%7D%20%20%3D%20%20%5Cfrac%7B%5Cfrac%7Bm_1%20%2A%20%20%5Clambda_1%20%2A%20D%7D%7Bd%7D%20%20%7D%7B%5Cfrac%7Bm_2%20%2A%20%20%5Clambda_2%20%2A%20D%7D%7Bd%7D%20%20%7D%20%3D%201)
=> ![\frac{ m_1 * \lambda _1 }{ m_2 * \lambda_2} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%20m_1%20%2A%20%20%5Clambda%20_1%20%20%7D%7B%20m_2%20%20%2A%20%20%5Clambda_2%7D%20%3D%20%201)
=> ![\lambda_2 = \frac{m_1 * \lambda_1}{m_2}](https://tex.z-dn.net/?f=%5Clambda_2%20%3D%20%20%5Cfrac%7Bm_1%20%2A%20%20%5Clambda_1%7D%7Bm_2%7D)
=> ![\lambda_2 = \frac{10 * 587 *10^{-9}}{11}](https://tex.z-dn.net/?f=%5Clambda_2%20%3D%20%20%5Cfrac%7B10%20%20%2A%20%20%20587%20%2A10%5E%7B-9%7D%7D%7B11%7D)
=> ![\lambda_2 = 534 *10^{-9} \ m](https://tex.z-dn.net/?f=%5Clambda_2%20%3D%20%20534%20%2A10%5E%7B-9%7D%20%5C%20m)
Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad