I believe that the answer to the question provided above is that with increase in resistance provided with constant current, Power dissipated will be lessen since power loss is high. Low power dissipation has low heat production.
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
C. Both A. and B.
Explanation:
Statement A. Reducing the volume is true because of Boyle's law, which states that for a gas at fixed temperature, the pressure p and the volume V are inversely proportional:

Therefore, when the volume V is reduced, the pressure p increases.
Statement B. Adding more gas is also true: in fact, if we add gas into the container, we will have more molecules of the gas hitting the wall of the container. But the pressure of a gas is exactly given by this: by the collision of the molecules against the wall of the container, so the more the molecules of gas, the greater the pressure.
Answer:
conductor
Does not easily transfer electricity