The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
When you doing a titration, you need to use an indicator to confirm whether the reaction is completed. When the indicator has the color change and will not change back in one minute, the reaction is finished and you don't need to add more.
Answer:
Mars
Explanation:
Terrestrial or inner planets like Mars and Venus were formed near the Sun where the solar system's temperatures were very high.
The answer is to test a piece of untreated and treated under same conditions!
Plastics are non-corrosive and non-reactive in nature. So they are used for storing chemicals in the laboratory. They are used for strong chemicals because they do not react with chemicals neither do they corrode