I think the correct answer from the choices presented above is the first option. The characteristics of low energy waves are <span>long wavelengths and low frequencies. Energy is established to be indirectly proportional to wavelengths and frequencies.</span>
OK.
But first we need to know . . .
-- Where is Riverdale ?
-- What is the air temperature there right now ?
-- What kind of system is being used now ?
-- Where can we get a complete description of the groundwater system ?
Answer:
The change in velocity is 15.83 [m/s]
Explanation:
Using the Newton's second law we have:
ΣF = m*a
The force in the graph is 185 N, therefore:
![185=0.369*a\\Where\\a=acceleration made it by the force [m/s^2]](https://tex.z-dn.net/?f=185%3D0.369%2Aa%5C%5CWhere%5C%5Ca%3Dacceleration%20made%20it%20by%20the%20force%20%5Bm%2Fs%5E2%5D)
![a=501.35[m/s^2]](https://tex.z-dn.net/?f=a%3D501.35%5Bm%2Fs%5E2%5D)
Now using the following kinematic equation:
![V^{2}=Vi^{2} + 2*a*(x-xi) \\where\\V=final velocity [m/s]\\Vi= initial velocity [m/s] = 0 the hockey disk is in rest when receives the hit.\\ x = Final position [m] = 0.4 m\\xi = initial position [m] = 0.15m\\](https://tex.z-dn.net/?f=V%5E%7B2%7D%3DVi%5E%7B2%7D%20%2B%202%2Aa%2A%28x-xi%29%20%5C%5Cwhere%5C%5CV%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5CVi%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D%200%20the%20hockey%20disk%20is%20in%20rest%20when%20receives%20the%20hit.%5C%5C%20x%20%3D%20Final%20position%20%5Bm%5D%20%3D%200.4%20m%5C%5Cxi%20%3D%20initial%20position%20%5Bm%5D%20%3D%200.15m%5C%5C)
Now replacing the values:
![V^{2}=0 + 2*501.35*(0.4-0.15)\\ \\V= 15.83[m/s]](https://tex.z-dn.net/?f=V%5E%7B2%7D%3D0%20%2B%202%2A501.35%2A%280.4-0.15%29%5C%5C%20%5C%5CV%3D%2015.83%5Bm%2Fs%5D)