1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
3 years ago
5

Zander worked at a pet shop in high school and during college began taking classes in veterinary medicine. To pay the bills duri

ng college, Zander worked at a pizza place. Both of Zanders jobs follow his career path.
True or False
Engineering
1 answer:
anastassius [24]3 years ago
3 0
True.
To understand it better
First job : Pet shop
Second job : pizza place
The first job supports his career path he has experience.
The second job support life in making sure he gets to his career path/ does help financially for him to get there.
And it’s called career pathway.
You might be interested in
1. Consider a city of 10 square kilometers. A macro cellular system design divides the city up into square cells of 1 square kil
kakasveta [241]

Answer:

a) n = 1000\,users, b)\Delta t_{min} = \frac{1}{30}\,h, \Delta t_{max} = \frac{\sqrt{2} }{30}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h, c) n = 10000000\,users, \Delta t_{min} = \frac{1}{3000}\,h, \Delta t_{max} = \frac{\sqrt{2} }{3000}\,h, \Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

Explanation:

a) The total number of users that can be accomodated in the system is:

n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )

n = 1000\,users

b) The length of the side of each cell is:

l = \sqrt{1\,km^{2}}

l = 1\,km

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{30}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{30}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h

c) The total number of users that can be accomodated in the system is:

n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )

n = 10000000\,users

The length of each side of the cell is:

l = \sqrt{100\,m^{2}}

l = 10\,m

Minimum time for traversing a cell is:

\Delta t_{min} = \frac{l}{v}

\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }

\Delta t_{min} = \frac{1}{3000}\,h

The maximum time for traversing a cell is:

\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}

\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h

The approximate time is giving by the average of minimum and maximum times:

\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}

\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h

8 0
3 years ago
A(n) ____ is an object setting used to control the visible display of objects.
KatRina [158]
Remote?? maybe I’m not really sure
3 0
3 years ago
Calculate the reluctance of a 4-meter long toroidal coil made of low-carbon steel with an inner radius of 1.75 cm and an outer r
My name is Ann [436]

Answer:

R = 31.9 x 10^(6) At/Wb

So option A is correct

Explanation:

Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A

Thus; R = L/μA,

Now from the question,

L = 4m

r_1 = 1.75cm = 0.0175m

r_2 = 2.2cm = 0.022m

So Area will be A_2 - A_1

Thus = π(r_2)² - π(r_1)²

A = π(0.0225)² - π(0.0175)²

A = π[0.0002]

A = 6.28 x 10^(-4) m²

We are given that;

L = 4m

μ_steel = 2 x 10^(-4) Wb/At - m

Thus, reluctance is calculated as;

R = 4/(2 x 10^(-4) x 6.28x 10^(-4))

R = 0.319 x 10^(8) At/Wb

R = 31.9 x 10^(6) At/Wb

8 0
3 years ago
Air enters a diffuser operating at steady state at 540°R, 15 lbf/in.2, with a velocity of 600 ft/s, and exits with a velocity of
yKpoI14uk [10]

Answer: Hello the question is incomplete below is the missing part

Question:  determine the temperature, in °R, at the exit

answer:

T2= 569.62°R

Explanation:

T1 = 540°R

V2 = 600 ft/s

V1 = 60 ft/s

h1 = 129.0613  ( value gotten from Ideal gas property-air table )

<em>first step : calculate the value of h2 using the equation below </em>

assuming no work is done ( potential energy is ignored )

h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778

∴ h2 = 136.17 Btu/Ibm

From Table A-17

we will apply interpolation

attached below is the remaining part of the solution

8 0
3 years ago
Which manufacturing process can create complex solid objects of metal such as the one shown in the image
Cerrena [4.2K]
Casting is the correct answer
8 0
2 years ago
Read 2 more answers
Other questions:
  • The uniform dresser has a weight of 90 lb and rests on a tile floor for which the coefficient of static friction is 0.25. If the
    6·1 answer
  • Explain the differences between planned and predictive maintenance.
    12·1 answer
  • A surveyor knows an elevation at Catch Basin to be elev=2156.77 ft. The surveyor takes a BS=2.67 ft on a rod at BM Catch Basin a
    15·1 answer
  • When preparing a foundation for a heavy duty machine tool, discuss any four (4) statics machine characteristics to be considered
    11·1 answer
  • Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occ
    9·1 answer
  • Which part does NOT rotate when the engine is running and the clutch pedal is depressed?
    7·1 answer
  • On July 23, 1983, Air Canada Flight 143 required 22,300 kg of jet fuel to fly from Montreal to Edmonton. The density of jet fuel
    8·1 answer
  • It describes the physical and social elements common to this work. Note that common contexts are listed toward the top, and less
    10·2 answers
  • Does somebody know how to do this?
    7·1 answer
  • A two-bus power system is interconnected by one transmission line. Bus 1 is a generator bus with specified terminal voltage magn
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!