K:
m=155g
M=39g/mol
n = 155g / 39g/mol ≈ 3,97mol
KNO₃:
m=122g
M=101g/mol
n = 122g/101g/mol = 1,21mol
2K + 10KNO₃ ⇒ 6K₂O + N₂
2mol : 10mol
3,97mol : 1,21mol
limiting reagent
KNO₃ is limiting reagent
The osmotic pressure of the glucose solution is 21.49 atm.
From the question given above, the following data were obtained:
- Molarity (M) = 0.85 M
- Temperature (T) = 35 °C = 35 + 273 = 308 K
- Van't Hoff's factor (i) = 1 (non-electrolyte)
- Gas constant (R) = 0.0821 atm.L/Kmol
- Osmotic pressure (π) =?
π = iMRT
π = 1 × 0.85 × 0.0821 × 308
π = 21.49 atm
Therefore, the osmotic pressure is 21.49 atm
Learn more about osmotic pressure: brainly.com/question/19533851
Answer is B- F has a smaller radius than F− because an additional electron causes greater repulsion in F− is the correct choice and the nuclear charge the radius of the anion increases.
Explanation: I hoped that helped!
Answer:
Compounds between Nonmetals and Nonmetals
Compounds that consist of a nonmetal bonded to a nonmetal are commonly known as Molecular Compounds, where the element with the positive oxidation state is written first. In many cases, nonmetals form more than one binary compound, so prefixes are used to distinguish them.