<span> One </span>volt<span> is </span>defined<span> as the difference in electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points.</span>
Answer:
ω = 380π rad/s
Explanation:
The formula for the angular frequency is the oscillation frequency f (hertz) multiplied by 2π
ω = 2πf
then
ω = 2π(190)
ω = 380π rad/s
Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.
Doing a force balance on the car:
ma = Fr
ma = μmg
a = μg
a = 0.3(9.81)
a = 29.43 m/s2
Using the formula:
2ax = v2
2(29.43)(34) = v2
v = 44.74 m/s = 161.05 km/h
The car was going 44.74 m/s or 161.05 kph when the brakes were applied.
Answer:
a) 15.78 mi/h/s
b) 7.105 m/s^2
Explanation:
a) It is given that speed changes from 0 to 60 miles per hour (mph)
Acceleration is equal to change in speed divided by time
mi/h/s
b)
1 mile/h = 0.45 m/s
Acceleration in m/s^2
m/s^2