Answer:
1.15 atm
Explanation:
According to Dalton's law of partial pressures, the total pressure is the sum of all the partial pressures of the gases present in the mixture.
Therefore we have:
Total pressure = partial pressure of carbon monoxide + partial pressure of oxygen + partial pressure of carbon dioxide
We were given the following:
Total pressure = 2.45 atm
Pressure of oxygen = 0.65 atm
Pressure of carbon monoxide = x
Pressure of carbon dioxide = 0.65 atm
Therefore:
2.45 = x + 0.65 + 0.65
2.45 = x + 1.3
x = 2.45 - 1.3
x = 1.15 atm
1 mole = 6.22 x 10^23 molecules (Avogadro's number)
15 moles x (6.22 x 10^23) = 9.33 x 10^24 atoms
Answer:
202 g/mol
Explanation:
Let's consider the neutralization between a generic monoprotic acid and KOH.
HA + KOH → KA + H₂O
The moles of KOH that reacted are:
0.0164 L × 0.08133 mol/L = 1.33 × 10⁻³ mol
The molar ratio of HA to KOH is 1:1. Then, the moles of HA that reacted are 1.33 × 10⁻³ moles.
1.33 × 10⁻³ moles of HA have a mass of 0.2688 g. The molar mass of the acid is:
0.2688 g/1.33 × 10⁻³ mol = 202 g/mol
Non-valence electrons: 1s22s22p6. Therefore, we write the electron configuration for Na: 1s22s22p63s1. What is the highest principal quantum number that you see in sodium's electron configuration? It's n = 3, so all electrons with n = 3 are valence electrons, and all electrons with n < 3 are non-valence electrons.
Answer:
Ionic
Explanation:
If A does not have electron to bond, it just receives one electron from B.
It can´t be covalent because A don´t have any electrons to bond with B.