I think the correct answer would be C. The common characteristic that is shareed by the elements found at the center of a period would be that they are the least reactive species. Having lower value of electronegativity, there is less ionization of the atoms which would also contribute to less reactivity.
Answer:

Explanation:
pH is derived from the concentration of hydronium ions in a solution. Hydrocyanic acid is HCN.
First, we shall figure out the moles of HCN:

If HCN was a strong acid:
HCN has a 1:1 ratio of H+ ions, the moles of H+ is also the same.
To find the molarity, we now divide by Liters. This gets us:

Finally, we plug it into the definition of pH:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


However, since HCN is a weak acid, it only partially dissociates. The
of HCN is
.
![K_a = \frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%20%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
We can use an ice table to determine that when x = H+,

![[H^+] = 8.83*10^{-6}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%208.83%2A10%5E%7B-6%7D)
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


Acid, however it is quite weak. Water's pH is somewhere between 5.4 and 7
Answer:
24.5%
Explanation:
You just add up the atomic masses.
Ca - 40.078
Cl2 - 35.4527 x 2 = 70.9054
------ 110.9834
H4 - 1.00794 x 4 = 4.03176
O2 - 31.9998
------ 36.03056
TOTAL - 147.01396
So the water is 36.03056/147.01396 = .245082576 but that is only accurate to three decimals (because the mass of Ca was only given to three decimals) so we write .245 and that is 24.5%
This is not my answer but I found it on Yahoo answers and it was answered by Anonymous.
Answer: 0.4M
Explanation:
Given that,
Amount of moles of NaOH (n) = ?
Mass of NaOH in grams = 40.0g
For molar mass of NaOH, use the atomic masses: Na = 23g; O = 16g; H = 1g
NaOH = (23g + 16g + 1g)
= 40g/mol
Since, n = mass in grams / molar mass
n = 40.0g / 40.0g/mol
n = 1 mole
Volume of NaOH solution (v) = 2.5 L
Concentration of NaOH solution (c) = ?
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
c = 1 mole / 2.5 L
c = 0.4 mol/L (Concentration in mol/L is the same as Molarity, M)
Thus, the concentration of a solution of a 40.0 g of NaOH in 2.5 L of solution is 0.4 mol/L or 0.4M