Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.
There are 0.501 moles in 60.66g of CF2Cl2
Answer:
Approximately
under standard conditions.
Explanation:
Equation for the overall reaction:
.
Write down the ionic equation for this reaction:
.
The net ionic equation for this reaction would be:
.
In this reaction:
- Zinc loses electrons and was oxidized (at the anode):
. - Copper gains electrons and was reduced (at the cathode):
.
Look up the standard potentials for each half-reaction on a table of standard reduction potentials.
Notice that
is oxidation and is likely not on the table of standard reduction potentials. However, the reverse reaction,
, is reduction and is likely on the table.
The reduction potential of
would be
, the opposite of the reverse reaction
.
The standard potential of the overall reaction would be the sum of the standard potentials of the two half-reactions:
.