three dots belong in the electron dot diagram of a boron(B) atom.
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
You can't tell without knowing the values of the resistors. Whichever resistor has less resistance (less ohms) will have more current flowing through it.
The force of gravity increases with an increase in the mass of objects. . . . A large, massive dog weighs more than a small dog.
Acceleration due to gravity is independent of the mass of objects. . . . Two falling inflated balls of different masses land at the same time.
Air resistance increases with an increase in the surface area of objects. . . . A crumpled ball of paper falls faster than a sheet of paper of the same mass.
arrowRight . . . . a button on a computer keyboard that causes the cursor to move to the right on the screen when pushed
arrowRight . . . . a button on a computer keyboard that causes the cursor to move to the right on the screen when pushed
arrowRight . . . . a button on a computer keyboard that causes the cursor to move to the right on the screen when pushed