Answer:
0.823 Nm
Explanation:
current, i = 100 A
radius, r = 10 cm
Angle between the normal and the magnetic field, θ = 30°
Magnetic field, B = 0.524 T
Torque is defined as the


Torque = 0.823 Nm
Thus, the torque is 0.823 Nm.
Answer:
the final temperature = 74.33°C
Explanation:
Using the expression Q = mcΔT for the heat transfer and the change in temperature .
Here ;
Q = heat transfer
m = mass of substance
c = specific heat
ΔT = the change in temperature
The heat Q required to change the phase of a sample mass m is:
Q = m
where;
is the latent heat of vaporization.
From the question ;
Let M represent the mass of the coffee that remains after evaporation is:
ΔT = 
where;
m = 2.50 g
M = (240 - 2.50) g = 237.5 g
= 539 kcal/kg
c = 1.00kcal/kg. °C
ΔT = 
ΔT = 5.67°C
The final temperature of the coffee is:
ΔT
where ;
= initial temperature = 80 °C
= (80 - 5.67)°C
= 74.33°C
Thus; the final temperature = 74.33°C
The pressure at the depth h in the ocean is given by (Stevin's law)

where

is the atmospheric pressure
and

is the pressure exerted by the column of water of height h=4267 m, with

being the water density and

.
Substituting, we find

We want to convert this into atmospheres: we know that 1 atm corresponds to the atmospheric pressure at sea level, so

, therefore we just need to divide by this number:
Phase unbalance causes three-phase motors to operate at temperatures higher than nameplate ratings and, therefore, the motor cannot deliver its rated horsepower.
<h3>What is an electric vehicle (EV)?</h3>
An EV stands for an electric vehicle. Electric vehicles (EVs) are autos that are powered totally or partially by electricity.
Electric cars are extremely cost-effective to run because they have fewer moving parts to maintain and use little to no fossil fuels (petrol or diesel).
Hence, three-phase motors operating with phase imbalance run at temperatures over nameplate limits, which prevents the motor from producing its rated horsepower.
.
To learn more about electric vehicles here,
brainly.com/question/27434548
#SPJ4
Answer:
The net force on the skater is zero. (
)
Explanation:
According to Newton's First Law, an object is at equilibrium when either it is at rest or moves at constant velocity, which means a net force of zero. Based on the given statement, there are no external forces acting on skate and, therefore, the net force on the skater is zero. (
)