Answer:
Electric energy moves through the wire to the lamp's bulb. In the bulb, electric energy transforms into thermal energy and light energy.
Explanation:
Answer:
Explanation:
Width of central diffraction peak is given by the following expression
Width of central diffraction peak= 2 λ D/ d₁
where d₁ is width of slit and D is screen distance and λ is wave length.
Width of other fringes become half , that is each of secondary diffraction fringe is equal to
λ D/ d₁
Width of central interference peak is given by the following expression
Width of each of bright fringe = λ D/ d₂
where d₂ is width of slit and D is screen distance and λ is wave length.
Now given that the central diffraction peak contains 13 interference fringes
so ( 2 λ D/ d₁) / λ D/ d₂ = 13
then ( λ D/ d₁) / λ D/ d₂ = 13 / 2
= 6.5
no of fringes contained within each secondary diffraction peak = 6.5
Answer:
The change in momentum is 28265.71 kg-m/s.
Explanation:
Given that,
Mass of a car, m = 877 kg
Initial velocity of the car, u = 0 (at rest)
Final velocity of the car, v = 116 km/h = 32.23 m/s
Time, t = 0.951 s
We need to find the change in momentum produced by the force. It can be calculated as the difference of final momentum and the initial momentum.

So, the change in momentum is 28265.71 kg-m/s.
Answer:
a) 23.51 m/s
b) 1.07 kg
Explanation:
Parameters given:
Kinetic energy, K = 295 J
Momentum, p = 25.1 kgm/s
a) The kinetic energy of a body is given as:

where m = mass of the body and v = speed of the body
We know that momentum is given as:
p = mv
Therefore:
K = 1/2 * pv
=> v = 2K / p
v = (2 * 295) / 25.1 = 23.51 m/s
The velocity of the body at that instant is 23.51 m/s.
b) Momentum is given as:
p = mv
=> m = p / v
m = 25.1 / 23.51 = 1.07 kg
The mass of the body at that instant is 1.07 kg
Answer:

Explanation:
Given:
- mass of steam,

- temperature of steam,

- temperature of resultant water,

We have,
- latent heat of vapourization of water,

- specific heat capacity of water,

<em>When we cool the steam of 100°C then firstly it loses its latent heat to convert into water of 100°C and the further cools the water.</em>
<u>Now the heat removed from steam to achieve the final state of water:</u>



